自学内容网 自学内容网

声音音频文件波谱可视化展示

在这里插入图片描述

1、简单图形展示

import matplotlib.pyplot as plt
import numpy as np
import torch
import torchaudio

def plot_waveform(waveform, sample_rate, title="Waveform", xlim=None, ylim=None):
    waveform = waveform.numpy()
    num_channels, num_frames = waveform.shape
    time_axis = torch.arange(0, num_frames) / sample_rate

    figure, axes = plt.subplots(num_channels, 1, figsize=(15, 5))
    if num_channels == 1:
        axes = [axes]
    for c in range(num_channels):
        axes[c].plot(time_axis, waveform[c], linewidth=1)
        axes[c].grid(True)
        if num_channels > 1:
            axes[c].set_ylabel(f'Channel {c+1}')
        if xlim:
            axes[c].set_xlim(xlim)
        if ylim:
            axes[c].set_ylim(ylim)
    figure.suptitle(title)
    plt.xlabel('Time [s]')
    plt.show()

# 示例音频文件路径
audio_path = r"E:\allchat\output_16000_mono_0.wav"

# 加载音频文件
waveform, sample_rate = torchaudio.load(audio_path)

# 绘制波形图
plot_waveform(waveform, sample_rate)

在这里插入图片描述

2、更美观可视化

import numpy as np
import matplotlib.pyplot as plt
import torch
from PIL import Image

def create_spectrogram(audio, sr=48000, n_fft=1024, hop=512, vmin=-100, vmax=0):
    # 确保音频是 torch.Tensor 类型
    audio = torch.as_tensor(audio)
    
    # 应用短时傅里叶变换(STFT)
    window = torch.hann_window(n_fft)
    spec = torch.stft(audio, n_fft, hop, window=window, return_complex=True)
    
    # 计算幅度谱并转换为分贝刻度
    spec = spec.abs().clamp_min(1e-12).log10().mul(10)
    
    # 如果是多声道,取平均
    if spec.dim() > 2:
        spec = spec.mean(0)
    
    # 将谱图转换为numpy数组
    spec_np = spec.cpu().numpy()
    
    # 计算时间和频率轴
    t = np.arange(0, spec_np.shape[1]) * hop / sr
    f = np.arange(0, spec_np.shape[0]) * sr / 2 / (n_fft // 2) / 1000

    # 创建图形
    fig, ax = plt.subplots(figsize=(15, 5))
    
    # 绘制谱图
    im = ax.pcolormesh(t, f, spec_np, shading='auto', vmin=vmin, vmax=vmax, cmap='inferno')
    
    # 设置标签
    ax.set_xlabel('Time [s]')
    ax.set_ylabel('Frequency [kHz]')
    ax.set_title('Spectrogram')
    
    # 添加颜色条
    plt.colorbar(im, ax=ax, format='%+2.0f dB')
    
    # 调整布局
    plt.tight_layout()
    
    # 将图形转换为PIL图像
    fig.canvas.draw()
    img = Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
    
    # 关闭matplotlib图形以释放内存
    plt.close(fig)
    
    return img


# 读取 WAV 文件
sr, audio = wavfile.read(r"E:\allchat\output_16000_mono_0.wav")

# 如果音频是整数类型,将其转换为 -1.0 到 1.0 之间的浮点数
if audio.dtype == np.int16:
    audio = audio.astype(np.float32) / 32768.0
elif audio.dtype == np.int32:
    audio = audio.astype(np.float32) / 2147483648.0

# 如果音频是立体声,取平均得到单声道
if audio.ndim > 1:
    audio = audio.mean(axis=1)

# 创建谱图
spectrogram = create_spectrogram(audio, sr=sr)

# 显示图像
spectrogram.show()

# 保存图像
spectrogram.save('1_spectrogram.png')

在这里插入图片描述

颜色自定义:
颜色映射(colormap)来改变频谱图的颜色方案

import numpy as np
import matplotlib.pyplot as plt
import torch
from PIL import Image
from scipy.io import wavfile
from matplotlib.colors import LinearSegmentedColormap

def create_custom_cmap(base_color):
    if base_color == 'blue':
        colors = ['darkblue', 'blue', 'cyan', 'yellow', 'red']
    elif base_color == 'black':
        colors = ['black', 'darkblue', 'blue', 'cyan', 'yellow', 'red']
    else:
        raise ValueError("base_color must be 'blue' or 'black'")
    
    return LinearSegmentedColormap.from_list("custom", colors)

def create_spectrogram(audio, sr=48000, n_fft=1024, hop=512, vmin=-100, vmax=0, base_color='blue'):
    # 确保音频是 torch.Tensor 类型
    audio = torch.as_tensor(audio)
    
    # 应用短时傅里叶变换(STFT)
    window = torch.hann_window(n_fft)
    spec = torch.stft(audio, n_fft, hop, window=window, return_complex=True)
    
    # 计算幅度谱并转换为分贝刻度
    spec = spec.abs().clamp_min(1e-12).log10().mul(10)
    
    # 如果是多声道,取平均
    if spec.dim() > 2:
        spec = spec.mean(0)
    
    # 将谱图转换为numpy数组
    spec_np = spec.cpu().numpy()
    
    # 计算时间和频率轴
    t = np.arange(0, spec_np.shape[1]) * hop / sr
    f = np.arange(0, spec_np.shape[0]) * sr / 2 / (n_fft // 2) / 1000

    # 创建自定义颜色映射
    custom_cmap = create_custom_cmap(base_color)

    # 创建图形
    fig, ax = plt.subplots(figsize=(15, 5))
    
    # 绘制谱图
    im = ax.pcolormesh(t, f, spec_np, shading='auto', vmin=vmin, vmax=vmax, cmap=custom_cmap)
    
    # 设置标签
    ax.set_xlabel('Time [s]')
    ax.set_ylabel('Frequency [kHz]')
    ax.set_title('Spectrogram')
    
    # 添加颜色条
    plt.colorbar(im, ax=ax, format='%+2.0f dB')
    
    # 调整布局
    plt.tight_layout()
    
    # 将图形转换为PIL图像
    fig.canvas.draw()
    img = Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
    
    # 关闭matplotlib图形以释放内存
    plt.close(fig)
    
    return img


# 读取 WAV 文件
sr, audio = wavfile.read(r"E:\allchat\output_16000_mono_0.wav")

# 如果音频是整数类型,将其转换为 -1.0 到 1.0 之间的浮点数
if audio.dtype == np.int16:
    audio = audio.astype(np.float32) / 32768.0
elif audio.dtype == np.int32:
    audio = audio.astype(np.float32) / 2147483648.0

# 如果音频是立体声,取平均得到单声道
if audio.ndim > 1:
    audio = audio.mean(axis=1)

# 创建蓝色底的谱图
spectrogram_blue = create_spectrogram(audio, sr=sr, base_color='blue')
spectrogram_blue.save('1_spectrogram_blue.png')

# 创建黑色底的谱图
spectrogram_black = create_spectrogram(audio, sr=sr, base_color='black')
spectrogram_black.save('1_spectrogram_black.png')

# 显示图像
spectrogram_blue.show()
spectrogram_black.show()

在这里插入图片描述
在这里插入图片描述


原文地址:https://blog.csdn.net/weixin_42357472/article/details/140157053

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!