自学内容网 自学内容网

hrnet人体关键点检测模型适配atlas笔记

hrnet人体关键点检测模型适配atlas
模型转换
将end2end.onnx模型转换为om模型
转换模型前激活:

source /usr/local/Ascend/ascend-toolkit/set_env.sh

转模型

atc --model=end2end.onnx --framework=5 --output=end2end --soc_version=Ascend310P3 

可修改Atlas开发板版本Ascend310P3、Ascend310B1、Ascend310等
推理代码

import time
import cv2
import numpy as np
from ais_bench.infer.interface import InferSession

model_path = "/tmp/pose/end2_16.om"
IMG_PATH = "/tmp/pose/ztest.jpg"

import logging


def print_outputs(outputs):
    """
    将 outputs 的完整内容打印到日志中。

    Args:
        outputs (numpy.ndarray): 模型的输出结果。
    """
    logging.basicConfig(level=logging.INFO, format='%(message)s')

    for i, output_slice in enumerate(outputs):
        logging.info(f"Output slice {i}:")
        for j, row in enumerate(output_slice):
            row_str = ', '.join([f'{x:.6f}' for x in row])
            logging.info(f"[{row_str}]")
        logging.info('')


def bbox_xywh2cs(bbox, aspect_ratio, padding, pixel_std):
    """Transform the bbox format from (x,y,w,h) into (center, scale)
    Args:
        bbox (ndarray): Single bbox in (x, y, w, h)
        aspect_ratio (float): The expected bbox aspect ratio (w over h)
        padding (float): Bbox padding factor that will be multilied to scale.
            Default: 1.0
        pixel_std (float): The scale normalization factor. Default: 200.0
    Returns:
        tuple: A tuple containing center and scale.
        - np.ndarray[float32](2,): Center of the bbox (x, y).
        - np.ndarray[float32](2,): Scale of the bbox w & h.
    """

    x, y, w, h = bbox[:4]
    center = np.array([x + w * 0.5, y + h * 0.5], dtype=np.float32)

    if w > aspect_ratio * h:
        h = w * 1.0 / aspect_ratio
    elif w < aspect_ratio * h:
        w = h * aspect_ratio

    scale = np.array([w, h], dtype=np.float32) / pixel_std
    scale = scale * padding

    return center, scale


def rotate_point(pt, angle_rad):
    """Rotate a point by an angle.
    Args:
        pt (list[float]): 2 dimensional point to be rotated
        angle_rad (float): rotation angle by radian
    Returns:
        list[float]: Rotated point.
    """
    assert len(pt) == 2
    sn, cs = np.sin(angle_rad), np.cos(angle_rad)
    new_x = pt[0] * cs - pt[1] * sn
    new_y = pt[0] * sn + pt[1] * cs
    rotated_pt = [new_x, new_y]

    return rotated_pt


def _get_3rd_point(a, b):
    """To calculate the affine matrix, three pairs of points are required. This
    function is used to get the 3rd point, given 2D points a & b.
    The 3rd point is defined by rotating vector `a - b` by 90 degrees
    anticlockwise, using b as the rotation center.
    Args:
        a (np.ndarray): point(x,y)
        b (np.ndarray): point(x,y)
    Returns:
        np.ndarray: The 3rd point.
    """
    assert len(a) == 2
    assert len(b) == 2
    direction = a - b
    third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32)

    return third_pt


def get_affine_transform(center,
                         scale,
                         rot,
                         output_size,
                         shift=(0., 0.),
                         inv=False):
    """Get the affine transform matrix, given the center/scale/rot/output_size.
    Args:
        center (np.ndarray[2, ]): Center of the bounding box (x, y).
        scale (np.ndarray[2, ]): Scale of the bounding box
            wrt [width, height].
        rot (float): Rotation angle (degree).
        output_size (np.ndarray[2, ] | list(2,)): Size of the
            destination heatmaps.
        shift (0-100%): Shift translation ratio wrt the width/height.
            Default (0., 0.).
        inv (bool): Option to inverse the affine transform direction.
            (inv=False: src->dst or inv=True: dst->src)
    Returns:
        np.ndarray: The transform matrix.
    """
    assert len(center) == 2
    assert len(scale) == 2
    assert len(output_size) == 2
    assert len(shift) == 2

    # pixel_std is 200.
    scale_tmp = scale * 210

    shift = np.array(shift)
    src_w = scale_tmp[0]
    dst_w = output_size[0]
    dst_h = output_size[1]

    rot_rad = np.pi * rot / 180
    src_dir = rotate_point([0., src_w * -0.5], rot_rad)
    dst_dir = np.array([0., dst_w * -0.5])

    src = np.zeros((3, 2), dtype=np.float32)
    src[0, :] = center + scale_tmp * shift
    src[1, :] = center + src_dir + scale_tmp * shift
    src[2, :] = _get_3rd_point(src[0, :], src[1, :])

    dst = np.zeros((3, 2), dtype=np.float32)
    dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
    dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
    dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])

    if inv:
        trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
    else:
        trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    return trans


def bbox_xyxy2xywh(bbox_xyxy):
    """Transform the bbox format from x1y1x2y2 to xywh.
    Args:
        bbox_xyxy (np.ndarray): Bounding boxes (with scores), shaped (n, 4) or
            (n, 5). (left, top, right, bottom, [score])
    Returns:
        np.ndarray: Bounding boxes (with scores),
          shaped (n, 4) or (n, 5). (left, top, width, height, [score])
    """
    bbox_xywh = bbox_xyxy.copy()
    bbox_xywh[:, 2] = bbox_xywh[:, 2] - bbox_xywh[:, 0]
    bbox_xywh[:, 3] = bbox_xywh[:, 3] - bbox_xywh[:, 1]

    return bbox_xywh


def _get_max_preds(heatmaps):
    """Get keypoint predictions from score maps.
    Note:
        batch_size: N
        num_keypoints: K
        heatmap height: H
        heatmap width: W
    Args:
        heatmaps (np.ndarray[N, K, H, W]): model predicted heatmaps.
    Returns:
        tuple: A tuple containing aggregated results.
        - preds (np.ndarray[N, K, 2]): Predicted keypoint location.
        - maxvals (np.ndarray[N, K, 1]): Scores (confidence) of the keypoints.
    """
    assert isinstance(heatmaps,
                      np.ndarray), ('heatmaps should be numpy.ndarray')
    assert heatmaps.ndim == 4, 'batch_images should be 4-ndim'

    N, K, _, W = heatmaps.shape
    heatmaps_reshaped = heatmaps.reshape((N, K, -1))
    idx = np.argmax(heatmaps_reshaped, 2).reshape((N, K, 1))
    maxvals = np.amax(heatmaps_reshaped, 2).reshape((N, K, 1))

    preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
    preds[:, :, 0] = preds[:, :, 0] % W
    preds[:, :, 1] = preds[:, :, 1] // W

    preds = np.where(np.tile(maxvals, (1, 1, 2)) > 0.0, preds, -1)
    return preds, maxvals


def transform_preds(coords, center, scale, output_size, use_udp=False):
    """Get final keypoint predictions from heatmaps and apply scaling and
    translation to map them back to the image.
    Note:
        num_keypoints: K
    Args:
        coords (np.ndarray[K, ndims]):
            * If ndims=2, corrds are predicted keypoint location.
            * If ndims=4, corrds are composed of (x, y, scores, tags)
            * If ndims=5, corrds are composed of (x, y, scores, tags,
              flipped_tags)
        center (np.ndarray[2, ]): Center of the bounding box (x, y).
        scale (np.ndarray[2, ]): Scale of the bounding box
            wrt [width, height].
        output_size (np.ndarray[2, ] | list(2,)): Size of the
            destination heatmaps.
        use_udp (bool): Use unbiased data processing
    Returns:
        np.ndarray: Predicted coordinates in the images.
    """
    assert coords.shape[1] in (2, 4, 5)
    assert len(center) == 2
    assert len(scale) == 2
    assert len(output_size) == 2

    # Recover the scale which is normalized by a factor of 200.
    scale = scale * 200

    if use_udp:
        scale_x = scale[0] / (output_size[0] - 1.0)
        scale_y = scale[1] / (output_size[1] - 1.0)
    else:
        scale_x = scale[0] / output_size[0]
        scale_y = scale[1] / output_size[1]

    target_coords = np.ones_like(coords)
    target_coords[:, 0] = coords[:, 0] * scale_x + center[0] - scale[0] * 0.5
    target_coords[:, 1] = coords[:, 1] * scale_y + center[1] - scale[1] * 0.5

    return target_coords


def keypoints_from_heatmaps(heatmaps,
                            center,
                            scale,
                            unbiased=False,
                            post_process='default',
                            kernel=11,
                            valid_radius_factor=0.0546875,
                            use_udp=False,
                            target_type='GaussianHeatmap'):
    # Avoid being affected
    heatmaps = heatmaps.copy()

    N, K, H, W = heatmaps.shape
    preds, maxvals = _get_max_preds(heatmaps)
    # add +/-0.25 shift to the predicted locations for higher acc.
    for n in range(N):
        for k in range(K):
            heatmap = heatmaps[n][k]
            px = int(preds[n][k][0])
            py = int(preds[n][k][1])
            if 1 < px < W - 1 and 1 < py < H - 1:
                diff = np.array([
                    heatmap[py][px + 1] - heatmap[py][px - 1],
                    heatmap[py + 1][px] - heatmap[py - 1][px]
                ])
                preds[n][k] += np.sign(diff) * .25
                if post_process == 'megvii':
                    preds[n][k] += 0.5

    # Transform back to the image
    for i in range(N):
        preds[i] = transform_preds(
            preds[i], center[i], scale[i], [W, H], use_udp=use_udp)

    if post_process == 'megvii':
        maxvals = maxvals / 255.0 + 0.5

    return preds, maxvals


def decode(output, center, scale, score_, batch_size=1):
    c = np.zeros((batch_size, 2), dtype=np.float32)
    s = np.zeros((batch_size, 2), dtype=np.float32)
    score = np.ones(batch_size)
    for i in range(batch_size):
        c[i, :] = center
        s[i, :] = scale

        score[i] = np.array(score_).reshape(-1)

    preds, maxvals = keypoints_from_heatmaps(
        output,
        c,
        s,
        False,
        'default',
        11,
        0.0546875,
        False,
        'GaussianHeatmap'
    )

    all_preds = np.zeros((batch_size, preds.shape[1], 3), dtype=np.float32)
    all_boxes = np.zeros((batch_size, 6), dtype=np.float32)
    all_preds[:, :, 0:2] = preds[:, :, 0:2]
    all_preds[:, :, 2:3] = maxvals
    all_boxes[:, 0:2] = c[:, 0:2]
    all_boxes[:, 2:4] = s[:, 0:2]
    all_boxes[:, 4] = np.prod(s * 200.0, axis=1)
    all_boxes[:, 5] = score
    result = {}

    result['preds'] = all_preds
    result['boxes'] = all_boxes

    print(result)
    return result


def draw(bgr, predict_dict, skeleton, box):
    cv2.rectangle(bgr, (int(box[0]), int(box[1])), (int(box[0]) + int(box[2]), int(box[1]) + int(box[3])),
                  (255, 0, 0))

    all_preds = predict_dict["preds"]
    for all_pred in all_preds:
        for x, y, s in all_pred:
            cv2.circle(bgr, (int(x), int(y)), 3, (0, 255, 120), -1)
        for sk in skeleton:
            if sk[0] < len(all_pred) and sk[1] < len(all_pred):
                x0 = int(all_pred[sk[0]][0])
                y0 = int(all_pred[sk[0]][1])
                x1 = int(all_pred[sk[1]][0])
                y1 = int(all_pred[sk[1]][1])
                cv2.line(bgr, (x0, y0), (x1, y1), (0, 255, 0), 1)
    cv2.imwrite("new_test.jpg", bgr)


if __name__ == "__main__":
    # Create RKNN object
    model = InferSession(0, model_path)
    print("done")
    #[x1,y1,w,h,conf],根据图像中人的目标框进行关键点检测
    bbox = [1, 185, 272, 225, 9]
    image_size = [192, 256]
    src_img = cv2.imread(IMG_PATH)
    img = cv2.cvtColor(src_img, cv2.COLOR_BGR2RGB)  # hwc rgb
    # RE_img = cv2.resize(img, (256, 192))
    aspect_ratio = image_size[0] / image_size[1]
    # aspect_ratio =1.33
    print('aspect_ratio', aspect_ratio)
    img_height = img.shape[0]
    img_width = img.shape[1]
    img_sz = [img_width, img_height]

    print('image shape', src_img.shape)
    padding = 1.2
    pixel_std = 220
    center, scale = bbox_xywh2cs(
        bbox,
        aspect_ratio,
        padding,
        pixel_std)
    # print(scale)
    # center =np.array([484.5, 395.5], dtype=np.float32)
    # scale = np.array([0.87, 0.653], dtype=np.float32)
    print(center, scale)
    trans = get_affine_transform(center, scale, 0, image_size)
    img = cv2.warpAffine(
        img,
        trans, (int(image_size[0]), int(image_size[1])),
        flags=cv2.INTER_LINEAR)
    print('trans', trans)
    print(img.shape)
    img = img / 255.0  # 归一化到0~1

    img = img.transpose(2, 0, 1)
    img = np.ascontiguousarray(img, dtype=np.float16)
    # Inference
    print("--> Running model")

    outputs = model.infer([img])[0]

    print('outputs', outputs)

    predict_dict = decode(outputs, center, scale, bbox[-1])
    inv_trans = cv2.invertAffineTransform(trans)

    skeleton = [[15, 13], [13, 11], [16, 14], [14, 12], [11, 12], [5, 11], [6, 12], [5, 6], [5, 7], [6, 8], [7, 9],
                [8, 10], [1, 2], [0, 1], [0, 2], [1, 3], [2, 4], [3, 5], [4, 6]]
    # draw(src_img, {"preds": [original_points]}, skeleton,[x_min, y_min, width, height])
    draw(src_img, predict_dict, skeleton, bbox)

运行代码需安装aclruntime,安装教程:
https://gitee.com/ascend/msit/pulls/1124.diff
此外,需下载ais_bench包
下载链接:https://download.csdn.net/download/qq_40357993/89994844?spm=1001.2014.3001.5503


原文地址:https://blog.csdn.net/qq_40357993/article/details/143776433

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!