自学内容网 自学内容网

LeetCode--134

134. 加油站

在一条环路上有 n 个加油站,其中第 i 个加油站有汽油 gas[i] 升。

你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。

给定两个整数数组 gas 和 cost ,如果你可以按顺序绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1 。如果存在解,则 保证 它是 唯一 的。

示例 1:

输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2]
输出: 3
解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。

示例 2:

输入: gas = [2,3,4], cost = [3,4,3]
输出: -1
解释:
你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周。

提示:

  • gas.length == n
  • cost.length == n
  • 1 <= n <= 105
  • 0 <= gas[i], cost[i] <= 104

对于这道题,我使用比较容易想到的解法,首先这肯定是一个循环数组相关的,首先考虑使用除余的方法:

class Solution {
public:
    int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
        for (int i = 0; i < gas.size(); i++) {
            int startgas = gas[i];
            for (int j = (i + 1) % gas.size(); j >= -1; j++) {
                int endgas = startgas - cost[(j + gas.size() - 1) % gas.size()];
                if (endgas < 0)
                    break;
                startgas = endgas + gas[(j + gas.size()) % gas.size()];
                if (j % gas.size() == i)
                    return i;
            }
        }
        return -1;
    }
};

不幸的是,测试案例突然来了一个导致没能通过,果然时间复杂度太重要了。

下面来看标答:

class Solution {
public:
    int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
        int n = gas.size();
        int i = 0;
        while (i < n) {
            int sumOfGas = 0, sumOfCost = 0;
            int cnt = 0;
            while (cnt < n) {
                int j = (i + cnt) % n;
                sumOfGas += gas[j];
                sumOfCost += cost[j];
                if (sumOfCost > sumOfGas) {
                    break;
                }
                cnt++;
            }
            if (cnt == n) {
                return i;
            } else {
                i = i + cnt + 1;
            }
        }
        return -1;
    }
};

由某个点可达的最远地点,是在初该点之外,其余的点能达该点,至少可达的最远地点。 

 

 


原文地址:https://blog.csdn.net/2202_76009199/article/details/136308989

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!