10 go语言(golang) - 数据类型:哈希表(map)及原理(二)
扩容
在 Go 语言中,当 map 的元素数量达到一定阈值时,会触发扩容操作以保持性能。这个过程称为 rehashing,即重新散列所有的键值对到一个更大的哈希表中。
扩容的条件
源码:
func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
// 省略代码
...
// Did not find mapping for key. Allocate new cell & add entry.
// If we hit the max load factor or we have too many overflow buckets,
// and we're not already in the middle of growing, start growing.
if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
hashGrow(t, h)
goto again // Growing the table invalidates everything, so try again
}
// 省略代码
...
}
mapassign 函数会在以下两种情况发生时触发哈希的扩容:
- 负载因子已经超过 6.5;
- 哈希使用了太多溢出桶;
不过因为 Go 语言哈希的扩容不是一个原子的过程,所以还需要判断当前哈希是否已经处于扩容状态,避免二次扩容造成混乱,即:!h.growing()
。
负载因子
默认负载因子:Go 的 map
通常会在平均每个桶有超过6.5个元素时触发扩容。
也就是说当 map中数据总个数 / 桶个数 > 6.5 ,引发翻倍扩容。而6.5如何来的?看源码:
// Maximum average load of a bucket that triggers growth is bucketCnt*13/16 (about 80% full)
// Because of minimum alignment rules, bucketCnt is known to be at least 8.
// Represent as loadFactorNum/loadFactorDen, to allow integer math.
loadFactorDen = 2
loadFactorNum = loadFactorDen * abi.MapBucketCount * 13 / 16
-
bucketCnt(abi.MapBucketCount):
-
bucketCnt
是每个桶(bucket)中可以存储的键值对数量。 -
在Go中,这个值通常是8。源码:
// Maximum number of key/elem pairs a bucket can hold. MapBucketCountBits = 3 // log2 of number of elements in a bucket. MapBucketCount = 1 << MapBucketCountBits // 1左移三位就是二进制的1000 ,就是十进制的8
-
-
负载因子(Load Factor):
- 负载因子决定了在何时需要对
map
进行扩容。 - 最大平均负载被设定为桶容量的80%(即每个桶大约80%满时会触发扩容)。
- 负载因子决定了在何时需要对
-
loadFactorNum 和 loadFactorDen:
- 使用分数形式来表示负载因子,以便使用整数运算而不是浮点运算,这样可以提高计算效率和精度。
loadFactorDen = 2
是分母,用于简化整数运算。loadFactorNum = loadFactorDen * abi.MapBucketCount * 13 / 16
是分子。
解读源码可以知道:最大负载因子被设置为 loadFactorNum/loadFactorDen = 13/2 = 6.5
扩容的方式
扩容方法hashGrow的源码:
func hashGrow(t *maptype, h *hmap) {
// If we've hit the load factor, get bigger.
// Otherwise, there are too many overflow buckets,
// so keep the same number of buckets and "grow" laterally.
bigger := uint8(1)
if !overLoadFactor(h.count+1, h.B) {
bigger = 0
h.flags |= sameSizeGrow
}
oldbuckets := h.buckets
newbuckets, nextOverflow := makeBucketArray(t, h.B+bigger, nil)
...
// commit the grow (atomic wrt gc)
h.B += bigger // 如果不是超过负载因子触发的扩容,则bigger=0,即B不变,容量不变,属于等量扩容
...
}
map
的扩容机制如下:
- 增量扩容:当负载因子超过阈值时,
map
会进行增量扩容。在这种情况下,新创建的哈希表的大小是旧哈希表的两倍,即h.B
会增加1,表示桶的数量翻倍。这种扩容方式称为增量扩容,因为每次只会扩大一倍,而不是无限制地增加桶的数量。 - 等量扩容:当溢出桶的数量过多,但负载因子没有超过阈值时,
map
会进行等量扩容。这种情况下,新创建的哈希表的大小与旧哈希表相同,即h.B
不会增加,桶的数量保持不变。这种扩容方式实际上是对现有数据的重新分布,目的是减少溢出桶的数量,使数据分布更加均匀,提高map
的性能。
具体步骤
1、检测扩容条件
每次向 map 中插入新元素后,都会检查是否要触发扩容。
- 负载因子:当负载因子超过6.5时,会触发扩容。
- 溢出桶:如果溢出桶数量过多,也会进行扩容。
2、分配新桶数组
- 增量扩容时:会为map分配一个新的、更大的bucket数组。新数组大小是当前大小的两倍(即
B
增加1,使得bucket数量变为原来的两倍)。 - 等量扩容时:新旧bucket数组大小保持不变,但元素会被重新分布以减少溢出。
3、初始化迁移状态
- 将旧bucket数组指针保存到
oldbuckets
字段。 - buckets指向新创建的桶(新桶中暂时还没有数据)
- 更新map结构中的其他相关字段以支持增量迁移。
func hashGrow(t *maptype, h *hmap) {
...
// commit the grow (atomic wrt gc)
h.B += bigger
h.flags = flags
h.oldbuckets = oldbuckets // 原本的桶设置为oldbuckets
h.buckets = newbuckets // 把新的桶设置为当前buckets
h.nevacuate = 0 // nevacuate记录已经完成搬移的bucket数量,初始化为0表示从第一个bucket开始进行增量迁移。
h.noverflow = 0 // 扩容后,新桶中的溢出桶计数器被重置,因为新结构中尚未使用任何溢出桶。
if h.extra != nil && h.extra.overflow != nil {
// Promote current overflow buckets to the old generation.
if h.extra.oldoverflow != nil {
throw("oldoverflow is not nil")
}
h.extra.oldoverflow = h.extra.overflow // 将原来使用过的所有溢出桶引用保存到extra.oldoverflow, 这样可以在需要时访问这些老的数据结构以完成迁移操作。
h.extra.overflow = nil // 新结构中还没有使用任何溢出,因此将其设为空,以便后续操作可以正确地开始分配新的溢出空间。
}
if nextOverflow != nil {
if h.extra == nil {
h.extra = new(mapextra)
}
h.extra.nextOverflow = nextOverflow // 指定新创建结构中的下一个可用溢出位置,这样当需要分配新的溢出空间时,可以快速找到起始点并进行管理。这有助于高效地处理未来可能出现的新冲突情况,并确保内存资源得到合理利用。
}
// the actual copying of the hash table data is done incrementally
// by growWork() and evacuate().
}
4、迁移数据
每次对map进行插入、删除或查找操作时,都会调用evacuate
函数来逐步搬移旧桶中的元素到新桶中。
func growWork(t *maptype, h *hmap, bucket uintptr) {
// make sure we evacuate the oldbucket corresponding
// to the bucket we're about to use
// 接下来的操作是为了确保将要使用的bucket对应的旧bucket已经被搬空。
evacuate(t, h, bucket&h.oldbucketmask())
// bucket & h.oldbucketmask() 计算出当前访问的新桶对应的旧桶编号。
// 调用evacuate函数来处理这个旧桶,将其元素搬到新结构中。
// evacuate one more oldbucket to make progress on growing
// 接下来会额外再处理一个旧桶,以推进整个扩容过程。
if h.growing() {
evacuate(t, h, h.nevacuate)
}
}
5、搬移逻辑
- **增量扩容:**对于每个需要搬移的旧桶,将其所有元素重新计算哈希并放置到新的对应位置上。
-
在进行扩容时,因为 bucket 数量翻倍(假设从 N 变为 2N),原有每个 bucket 索引会映射到两个可能的索引上:
oldbucket
和oldbucket + N
- 假设原来有 8 个 buckets,则 oldbuckets 的索引范围是 [0,7]。在扩容后,buckets 数变为16,则每个 oldbucket 对应两个 new buckets:
- Bucket 0 映射到 New Bucket 0 和 New Bucket 8
- Bucket 1 映射到 New Bucket 1 和 New Bucket 9
- …
- 假设原来有 8 个 buckets,则 oldbuckets 的索引范围是 [0,7]。在扩容后,buckets 数变为16,则每个 oldbucket 对应两个 new buckets:
-
对于正在迁移中的每个 key, 再次计算其 hash 值,根据hash值的
底B位
来决定将此键值对分流道那个新桶中。- 例如,如果有 16 (即 2 4 2^4 24 ) 个 buckets,则需要最低的四位(B=4)来确定 bucket 索引。
-
B的值在原来的基础上已加1,也就意味着通过多1位来计算此键值对要分流到新桶位置:
- 当新增的位的值为 0,则数据会迁移到与旧桶编号一致的位置 :oldbucket。
- 当新增的位的值为 1,则数据会迁移到翻倍后对应编号位置 :oldbucket + N。
-
- **等量扩容:**重新计算 Hash
- 对于每个 key,使用相同或可能更新的 hash 函数再次计算其 hash 值。这可能涉及到使用新的随机种子
hash0
来确保更好地散列。 - 由于 hash 函数或种子可能发生变化,即使桶数没有增加,key 的 hash 值也可能与之前不同。以确保旧桶数据能比之前更均匀的散列不同桶中
- 对于每个 key,使用相同或可能更新的 hash 函数再次计算其 hash 值。这可能涉及到使用新的随机种子
6、完成迁移
- 当所有旧桶都被处理完毕后,即所有元素都已成功从旧结构移动到新结构(将原来指向旧 hashtable 的指针指向新 hashtable),此时可以释放旧bucket数组所占用的内存资源。
原文地址:https://blog.csdn.net/weixin_39743356/article/details/143415013
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!