自学内容网 自学内容网

【机器学习实战】电力需求预测挑战赛 Datawhale AI 夏令营 task2

一、赛题背景

随着全球经济的快速发展和城市化进程的加速,电力系统面临着越来越大的挑战。电力需求的准确预测对于电网的稳定运行、能源的有效管理以及可再生能源的整合至关重要。
然而,电力需求受到多种因素的影响,为了提高电力需求预测的准确性和可靠性,推动智能电网和可持续能源系统的发展,本场以“电力需求预测”为赛题的数据算法挑战赛。选手需要根据历史数据构建有效的模型,能够准确的预测未来电力需求。

二、赛题任务

给定多个房屋对应电力消耗历史N天的相关序列数据等信息,预测房屋对应电力的消耗。

三、评审规则

1.数据说明
赛题数据由训练集和测试集组成,为了保证比赛的公平性,将每日日期进行脱敏,用 1 − N 1-N 1N进行标识,即 1 1 1为数据集最近一天,其中 1 − 10 1-10 110为测试集数据。数据集由字段id(房屋id)、 dt(日标识)、type(房屋类型)、target(实际电力消耗)组成。

特征字段字段描述
id房屋id
dt日标识
type房屋类型
target实际电力消耗,预测目标

2.评审规则
预测结果以 mean square error 作为评判标准,具体公式如下:
1 n ∑ n = 1 n ( y i − y ^ i ) 2 \frac{1}{n}\sum_{n=1}^{n}(y_{i}-\hat y_{i})^{2} n1n=1n(yiy^i)2
其中, y i y_{i} yi是真实电力消耗, y ^ i \hat y_{i} y^i是预测电力消耗。

四、具体实践

在task1中,我们使用了历史前10天的平均值,作为未来10天的预测值,最终的结果的是373.89846分,可以看到误差是相对比较大的,这次任务呢,我们尝试使用一个经典的机器学习模型来预测未来十天的电力预测。

4.1 实现的思路

Task1 的baseline我们是基于经验模型(使用均值作为结果数据)来解决的问题
Task2 版本教程将使用机器学习模型解决本次问题,模型使用简单,数据不需要过多预处理;
使用机器学习方法一般主要需要从** 获取数据&增强**、特征提取模型 三个方面下手

4.2 理论介绍

GBDT

GBDT (Gradient Boosting Decision Tree) 是机器学习中一个长盛不衰的模型,其主要思想是利用弱分类器(决策树)迭代训练以得到最优模型,该模型具有训练效果好、不易过拟合等优点。
GBDT不仅在工业界应用广泛,通常被用于多分类、点击率预测、搜索排序等任务;在各种数据挖掘竞赛中也是致命武器,据统计Kaggle上的比赛有一半以上的冠军方案都是基于GBDT

LightGBM

LightGBM(Light Gradient Boosting Machine)是一个实现GBDT算法的框架,支持高效率的并行训练,并且具有更快的训练速度、更低的内存消耗、更好的准确率、支持分布式可以快速处理海量数据等优点。
LightGBM 框架中还包括随机森林和逻辑回归等模型。通常应用于二分类、多分类和排序等场景。
例如:在个性化商品推荐场景中,通常需要做点击预估模型。使用用户过往的行为(点击、曝光未点击、购买等)作为训练数据,来预测用户点击或购买的概率。根据用户行为和用户属性提取一些特征,包括:

  • 类别特征(Categorical Feature):字符串类型,如性别(男/女)。
  • 物品类型:服饰、玩具和电子等。
  • 数值特征(Numrical Feature):整型或浮点型,如用户活跃度或商品价格等。

4.3 代码的实现与运行

4.3.1 导入模块

如下代码所示,是我们分析数据和导入模型使用的python模块,但是运行时,AI Studio并没有附带lightgbm的包,因此需要我们呢自己手动安装。

import numpy as np
import pandas as pd
import lightgbm as lgb
from sklearn.metrics import mean_squared_log_error, mean_absolute_error, mean_squared_error
import tqdm
import sys
import os
import gc
import argparse
import warnings
warnings.filterwarnings('ignore')

因此,在运行上述代码块前,我们先使用pip 安装我们需要的lightgbm的包,如下图所示。
注意】:这里有一个坑,就是教程给的代码没有使用lightgbm最新版本的包,因此,我选了最老的版本3.2.1,否则,后面我们在训练模型时,会报错,显示verbose_eval, early_stopping_rounds参数多余给出,这是因为最新版本的lightgbm在train这个函数内,并没有使用这两个参数。
在这里插入图片描述

4.3.2 探索性数据分析(EDA)

在数据准备阶段,主要读取训练数据和测试数据,并进行基本的数据展示。这一部分为导入我们需要的数据

train = pd.read_csv('./data/train.csv')
test = pd.read_csv('./data/test.csv')

这里给的代码有些问题,因为我们在AI Studio里,数据在data文件夹下多了一个子文件夹,如图所示,我们打开左侧的data文件。
在这里插入图片描述
可以看到这里还有一个子文件夹,因此,我们直接运行教程给的代码,会报错,显示找不到数据,因此,我们需要更改读取数据的路径。
在这里插入图片描述
如下代码块所示,这里注意,不同的用户,可能这里的data子文件后面的数字不同,读者在体验代码实战时,需要根据自己平台的文件名字修改

train = pd.read_csv('./data/data283931/train.csv')
test = pd.read_csv('./data/data283931/test.csv')

这里我们并没有显示如图所示的文件细节,事实上,该图显示的是train数据的打印,我们可以在代码后写一行train,就可以默认输出train训练集了。
在这里插入图片描述
运行的结果,如图所示,下面的2877305表示数据的行数,4代表列数。
在这里插入图片描述
但是可以看到中间省略了很多的数据,第6行(行号为5)的数据被省略了,因为我们的训练集行数太多了,但是如果我们想要看到前10行的数据怎么办呢?可以使用head属性,修改代码为train.head(10), 这里的10就代表显示前10行。修改后的如图所示。
在这里插入图片描述

数据简单介绍

  • 其中id为房屋id,
  • dt为日标识,训练数据dt最小为11,不同id对应序列长度不同;
  • type为房屋类型,通常而言不同类型的房屋整体消耗存在比较大的差异;
  • target为实际电力消耗,也是我们的本次比赛的预测目标。

下面进行简单的可视化分析,帮助我们对数据有个简单的了解。

  • 不同type类型对应target的柱状图
    这里可以看到,代码将不同类型的数据使用groupby聚合起来求平均值,然后使用房屋类型作为横坐标,计算的均值所谓纵坐标,绘制了相应的柱状图。
import matplotlib.pyplot as plt
# 不同type类型对应target的柱状图
type_target_df = train.groupby('type')['target'].mean().reset_index()
plt.figure(figsize=(8, 4))
plt.bar(type_target_df['type'], type_target_df['target'], color=['blue', 'green'])
plt.xlabel('Type')
plt.ylabel('Average Target Value')
plt.title('Bar Chart of Target by Type')
plt.show()

运行的结果如图所示:
在这里插入图片描述

  • id为00037f39cf的按dt为序列关于target的折线图
    这里将第一个房子的历史用电量作了一个折线图,id为00037f39cf是第一个房子的编号。可以看到数据的波动是比较大的,但是波动整体有一定的周期规律。
specific_id_df = train[train['id'] == '00037f39cf']
plt.figure(figsize=(10, 5))
plt.plot(specific_id_df['dt'], specific_id_df['target'], marker='o', linestyle='-')
plt.xlabel('DateTime')
plt.ylabel('Target Value')
plt.title("Line Chart of Target for ID '00037f39cf'")
plt.show()

在这里插入图片描述

4.3.3 特征工程

这里主要构建了 历史平移特征 和 窗口统计特征;每种特征都是有理可据的,具体说明如下:

  • 历史平移特征:通过历史平移获取上个阶段的信息;如下图所示,可以将d-1时间的信息给到d时间,d时间信息给到d+1时间,这样就实现了平移一个单位的特征构建。

在这里插入图片描述

  • 窗口统计特征:窗口统计可以构建不同的窗口大小,然后基于窗口范围进统计均值、最大值、最小值、中位数、方差的信息,可以反映最近阶段数据的变化情况。如下图所示,可以将d时刻之前的三个时间单位的信息进行统计构建特征给我d时刻。

在这里插入图片描述

实现的代码如下:

# 合并训练数据和测试数据,并进行排序
data = pd.concat([test, train], axis=0, ignore_index=True)
data = data.sort_values(['id','dt'], ascending=False).reset_index(drop=True)

# 历史平移
for i in range(10,30):
    data[f'last{i}_target'] = data.groupby(['id'])['target'].shift(i)
    
# 窗口统计
data[f'win3_mean_target'] = (data['last10_target'] + data['last11_target'] + data['last12_target']) / 3

# 进行数据切分
train = data[data.target.notnull()].reset_index(drop=True)
test = data[data.target.isnull()].reset_index(drop=True)

# 确定输入特征
train_cols = [f for f in data.columns if f not in ['id','target']]

4.3.4 模型训练与测试集预测

这里选择使用Lightgbm模型,也是通常作为数据挖掘比赛的基线模型,在不需要过程调参的情况的也能得到比较稳定的分数
另外需要注意的训练集和验证集的构建:因为数据存在时序关系,所以需要严格按照时序进行切分,

  • 这里选择原始给出训练数据集中dt为30之后的数据作为训练数据,之前的数据作为验证数据
  • 这样保证了数据不存在穿越问题(不使用未来数据预测历史数据)
def time_model(lgb, train_df, test_df, cols):
    # 训练集和验证集切分
    trn_x, trn_y = train_df[train_df.dt>=31][cols], train_df[train_df.dt>=31]['target']
    val_x, val_y = train_df[train_df.dt<=30][cols], train_df[train_df.dt<=30]['target']
    # 构建模型输入数据
    train_matrix = lgb.Dataset(trn_x, label=trn_y)
    valid_matrix = lgb.Dataset(val_x, label=val_y)
    # lightgbm参数
    lgb_params = {
        'boosting_type': 'gbdt',
        'objective': 'regression',
        'metric': 'mse',
        'min_child_weight': 5,
        'num_leaves': 2 ** 5,
        'lambda_l2': 10,
        'feature_fraction': 0.8,
        'bagging_fraction': 0.8,
        'bagging_freq': 4,
        'learning_rate': 0.05,
        'seed': 2024,
        'nthread' : 16,
        'verbose' : -1,
    }
    # 训练模型
    model = lgb.train(lgb_params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix], 
                      categorical_feature=[], verbose_eval=500, early_stopping_rounds=500)
    # 验证集和测试集结果预测
    val_pred = model.predict(val_x, num_iteration=model.best_iteration)
    test_pred = model.predict(test_df[cols], num_iteration=model.best_iteration)
    # 离线分数评估
    score = mean_squared_error(val_pred, val_y)
    print(score)
       
    return val_pred, test_pred
    
lgb_oof, lgb_test = time_model(lgb, train, test, train_cols)

# 保存结果文件到本地
test['target'] = lgb_test
test[['id','dt','target']].to_csv('submit.csv', index=None)

运行的结果如图所示,
在这里插入图片描述
我们将生成的submit.csv文件在平台提交测试,如图所示,可以看到相比于之前,提升了很多,因为我们是分数越小说明,与真实值的误差越小。
在这里插入图片描述


原文地址:https://blog.csdn.net/qq_26274961/article/details/140505010

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!