自学内容网 自学内容网

sdnet

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import numpy as np

import torch
import torch.nn as nn
import torch._utils
import torch.nn.functional as F
import torch.nn.init as init
import torch.optim as optim
from Lib.config import config
import random
import scipy.io as scio
from torch.utils.data import TensorDataset, DataLoader
import csv
import matplotlib.pyplot as plt

#  定义一个3x3卷积!kernel_initializer='he_normal','glorot_normal'
def regularized_padded_conv(in_channels, out_channels, kernel_size, stride=1):
    conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=kernel_size // 2, bias=False)
    # 使用 kaiming_normal_ 进行初始化
    nn.init.kaiming_normal_(conv.weight, mode='fan_out', nonlinearity='leaky_relu')
    return conv


####################### 通道注意力机制 ##########################
class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
        self.max_pool = nn.AdaptiveMaxPool2d((1, 1))
        compressed_channels = in_planes // ratio
        self.conv1 = nn.Conv2d(in_planes, compressed_channels, kernel_size=1, stride=1, padding=0)
        self.conv2 = nn.Conv2d(compressed_channels, in_planes, kernel_size=1, stride=1, padding=0)
        self.leaky_relu = nn.LeakyReLU(negative_slope=0.1, inplace=True)

    def forward(self, inputs):
        avg = self.avg_pool(inputs)
        max = self.max_pool(inputs)
        avg = self.conv2(self.leaky_relu(self.conv1(avg)))
        max = self.conv2(self.leaky_relu(self.conv1(max)))
        out = avg + max
        out = torch.sigmoid(out)
        return out


########################### 空间注意力机制 ###########################
class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()
        self.conv1 = regularized_padded_conv(2, 1, kernel_size, stride=1)
        self.sigmoid = nn.Sigmoid()
        self.leaky_relu = nn.LeakyReLU(negative_slope=0.1, inplace=True)

    def forward(self, inputs):
        avg_out = torch.mean(inputs, dim=1, keepdim=True)
        max_out, _ = torch.max(inputs, dim=1, keepdim=True)
        out = torch.cat([avg_out, max_out], dim=1)
        out = self.conv1(out)
        out = self.sigmoid(out)
        return out


####################################csc layer###########################################################
class elasnet_prox(nn.Module):
    r"""Applies the elastic net proximal operator,
    NOTS: it will degenerate to ell1_prox if mu=0.0

    The elastic net proximal operator function is given as the following function
    \argmin_{x} \lambda ||x||_1 + \mu /2 ||x||_2^2 + 0.5 ||x - input||_2^2

    Args:
      lambd: the :math:`\lambda` value on the ell_1 penalty term. Default: 0.5
      mu:    the :math:`\mu` value on the ell_2 penalty term. Default: 0.0

    Shape:
      - Input: :math:`(N, *)` where `*` means, any number of additional
        dimensions
      - Output: :math:`(N, *)`, same shape as the input

    """

    def __init__(self, lambd=0.5, mu=0.0):
        super(elasnet_prox, self).__init__()
        self.lambd = lambd
        self.scaling_mu = 1.0 / (1.0 + mu)

    def forward(self, input):
        return F.softshrink(input * self.scaling_mu, self.lambd * self.scaling_mu)

    def extra_repr(self):
        return '{} {}'.format(self.lambd, self.scaling_mu)


class DictBlock(nn.Module):
    # c = argmin_c lmbd * ||c||_1  +  mu/2 * ||c||_2^2 + 1 / 2 * ||x - weight (@conv) c||_2^2
    def __init__(self, n_channel, dict_size, mu=0.0, lmbd=0.0, n_dict=1, non_negative=True,
                 stride=1, kernel_size=3, padding=1, share_weight=True, square_noise=True,
                 n_steps=10, step_size_fixed=True, step_size=0.1, w_norm=True,
                 padding_mode="constant"):
        super(DictBlock, self).__init__()

        self.mu = mu
        self.lmbd = lmbd  # LAMBDA
        self.n_dict = n_dict
        self.stride = stride
        self.kernel_size = (kernel_size, kernel_size)
        self.padding = padding
        self.padding_mode = padding_mode
        assert self.padding_mode in ['constant', 'reflect', 'replicate', 'circular']
        self.groups = 1
        self.n_steps = n_steps
        self.conv_transpose_output_padding = 0 if stride == 1 else 1
        self.w_norm = w_norm
        self.non_negative = non_negative
        self.v_max = None
        self.v_max_error = 0.
        self.xsize = None
        self.zsize = None
        self.lmbd_ = None
        self.square_noise = square_noise

        self.weight = nn.Parameter(torch.Tensor(dict_size, self.n_dict * n_channel, kernel_size, kernel_size))

        with torch.no_grad():
            init.kaiming_uniform_(self.weight)

        self.nonlinear = elasnet_prox(self.lmbd * step_size, self.mu * step_size)

        self.register_buffer('step_size', torch.tensor(step_size, dtype=torch.float))

    def fista_forward(self, x):

        for i in range(self.n_steps):

            weight = self.weight
            step_size = self.step_size

            if i == 0:
                c_pre = 0.

                c = step_size * F.conv2d(x.repeat(1, self.n_dict, 1, 1), weight, bias=None, stride=self.stride,
                                         padding=self.padding)

                c = self.nonlinear(c)
            elif i == 1:
                c_pre = c
                xp = F.conv_transpose2d(c, weight, bias=None, stride=self.stride, padding=self.padding,
                                        output_padding=self.conv_transpose_output_padding)
                r = x.repeat(1, self.n_dict, 1, 1) - xp

                if self.square_noise:
                    gra = F.conv2d(r, weight, bias=None, stride=self.stride, padding=self.padding)
                else:
                    w = r.view(r.size(0), -1)
                    normw = w.norm(p=2, dim=1, keepdim=True).clamp_min(1e-12).expand_as(w).detach()
                    w = (w / normw).view(r.size())

                    gra = F.conv2d(w, weight, bias=None, stride=self.stride, padding=self.padding) * 0.5

                c = c + step_size * gra
                c = self.nonlinear(c)
                t = (math.sqrt(5.0) + 1.0) / 2.0
            else:
                t_pre = t
                t = (math.sqrt(1.0 + 4.0 * t_pre * t_pre) + 1) / 2.0
                a = (t_pre + t - 1.0) / t * c + (1.0 - t_pre) / t * c_pre
                c_pre = c
                xp = F.conv_transpose2d(c, weight, bias=None, stride=self.stride, padding=self.padding,
                                        output_padding=self.conv_transpose_output_padding)
                r = x.repeat(1, self.n_dict, 1, 1) - xp

                if self.square_noise:
                    gra = F.conv2d(r, weight, bias=None, stride=self.stride, padding=self.padding)
                else:
                    w = r.view(r.size(0), -1)
                    normw = w.norm(p=2, dim=1, keepdim=True).clamp_min(1e-12).expand_as(w).detach()
                    w = (w / normw).view(r.size())

                    gra = F.conv2d(w, weight, bias=None, stride=self.stride, padding=self.padding) * 0.5

                c = a + step_size * gra
                c = self.nonlinear(c)

            if self.non_negative:
                c = F.leaky_relu(c, negative_slope=0.1)

        return c, weight

    def forward(self, x):

        if self.xsize is None:
            self.xsize = (x.size(-3), x.size(-2), x.size(-1))
            print(self.xsize)
        else:
            assert self.xsize[-3] == x.size(-3) and self.xsize[-2] == x.size(-2) and self.xsize[-1] == x.size(-1)

        if self.w_norm:
            self.normalize_weight()

        c, weight = self.fista_forward(x)

        # Compute loss
        xp = F.conv_transpose2d(c, weight, bias=None, stride=self.stride, padding=self.padding,
                                output_padding=self.conv_transpose_output_padding)
        r = x.repeat(1, self.n_dict, 1, 1) - xp
        r_loss = torch.sum(torch.pow(r, 2)) / self.n_dict
        c_loss = self.lmbd * torch.sum(torch.abs(c)) + self.mu / 2. * torch.sum(torch.pow(c, 2))

        if self.zsize is None:
            self.zsize = (c.size(-3), c.size(-2), c.size(-1))
            print(self.zsize)
        else:
            assert self.zsize[-3] == c.size(-3) and self.zsize[-2] == c.size(-2) and self.zsize[-1] == c.size(-1)

        if self.lmbd_ is None and config.MODEL.ADAPTIVELAMBDA:
            self.lmbd_ = self.lmbd * self.xsize[-3] * self.xsize[-2] * self.xsize[-1] / (
                        self.zsize[-3] * self.zsize[-2] * self.zsize[-1])
            self.lmbd = self.lmbd_
            print("======")
            print("xsize", self.xsize)
            print("zsize", self.zsize)
            print("new lmbd: ", self.lmbd)

        return c, (r_loss, c_loss)

    def update_stepsize(self):
        step_size = 0.9 / self.power_iteration(self.weight)
        self.step_size = self.step_size * 0. + step_size
        self.nonlinear.lambd = self.lmbd * step_size
        self.nonlinear.scaling_mu = 1.0 / (1.0 + self.mu * step_size)

    def normalize_weight(self):
        with torch.no_grad():
            w = self.weight.view(self.weight.size(0), -1)
            normw = w.norm(p=2, dim=1, keepdim=True).clamp_min(1e-12).expand_as(w)
            w = (w / normw).view(self.weight.size())
            self.weight.data = w.data

    def power_iteration(self, weight):

        max_iteration = 50
        v_max_error = 1.0e5
        tol = 1.0e-5
        k = 0

        with torch.no_grad():
            if self.v_max is None:
                c = weight.shape[0]
                v = torch.randn(size=(1, c, self.zsize[-2], self.zsize[-1])).to(weight.device)
            else:
                v = self.v_max.clone()

            while k < max_iteration and v_max_error > tol:
                tmp = F.conv_transpose2d(
                    v, weight, bias=None, stride=self.stride, padding=self.padding,
                    output_padding=self.conv_transpose_output_padding
                )
                v_ = F.conv2d(tmp, weight, bias=None, stride=self.stride, padding=self.padding)
                v_ = F.normalize(v_.view(-1), dim=0, p=2).view(v.size())
                v_max_error = torch.sum((v_ - v) ** 2)
                k += 1
                v = v_

            v_max = v.clone()
            Dv_max = F.conv_transpose2d(
                v_max, weight, bias=None, stride=self.stride, padding=self.padding,
                output_padding=self.conv_transpose_output_padding
            )  # Dv

            lambda_max = torch.sum(Dv_max ** 2).item()  # vTDTDv / vTv, ignore the vTv since vTv = 1

        self.v_max = v_max
        return lambda_max


################################# SDNet ################################################################
from Lib.config import config as _cfg

cfg = _cfg

class DictConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True):
        super(DictConv2d, self).__init__()

        self.dn = DictBlock(
            in_channels, out_channels, stride=stride, kernel_size=kernel_size, padding=padding,
            mu=cfg['MODEL']['MU'], lmbd=cfg['MODEL']['LAMBDA'][0], square_noise=cfg['MODEL']['SQUARE_NOISE'],
            n_dict=cfg['MODEL']['EXPANSION_FACTOR'], non_negative=cfg['MODEL']['NONEGATIVE'],
            n_steps=cfg['MODEL']['NUM_LAYERS'], w_norm=cfg['MODEL']['WNORM']
        )

        self.rc = None
        self.r_loss = []

    def get_rc(self):
        if self.rc is None:
            raise ValueError("should call forward first.")
        else:
            return self.rc

    def forward(self, x):
        out, rc = self.dn(x)
        self.rc = rc

        if self.training is False:
            self.r_loss.extend([self.rc[0].item() / len(x)] * len(x))

        return out


#########模型构建###############
class SDNet_model(nn.Module):
    def __init__(self, dropout1, dropout2, num_classes=2):
        super(SDNet_model, self).__init__()
        #  self.layer0 = nn.Sequential(
        #      DictConv2d(1, 64, kernel_size=3, stride=1, padding=1, bias=False),
        #      nn.BatchNorm2d(64),
        #      nn.ReLU(inplace=True),
        #  )
        self.conv0 = nn.Conv2d(1, 64, kernel_size=(3, 3), padding=(1, 1))
        self.bn0 = nn.BatchNorm2d(64)
        self.pool0 = nn.MaxPool2d(kernel_size=(2, 2))
        self.conv1 = nn.Conv2d(64, 128, kernel_size=(3, 3), padding=(1, 1))
        self.bn1 = nn.BatchNorm2d(128)
        self.pool1 = nn.MaxPool2d(kernel_size=(2, 2))
        self.dropout1 = nn.Dropout2d(p=dropout1)

        self.layer0 = nn.Sequential(
            DictConv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(256),
            nn.LeakyReLU(inplace=True),
        )
        self.conv2 = nn.Conv2d(256, 256, kernel_size=(3, 3), padding=(1, 1))
        self.bn2 = nn.BatchNorm2d(256)
        self.ca = ChannelAttention(256)
        self.sa = SpatialAttention()
        self.conv3 = nn.Conv2d(256, 256, kernel_size=(3, 3), padding=(1, 1))
        self.pool2 = nn.MaxPool2d(kernel_size=(2, 2))
        self.dropout2 = nn.Dropout2d(p=dropout2)
        self.flatten = nn.Flatten()
        self.fc1 = nn.Linear(256 * 12 * 75, 512)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, num_classes)
        self.leaky_relu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
        self.sigmoid = nn.Sigmoid()

    def update_stepsize(self):

        for m in self.modules():
            if isinstance(m, DictBlock):
                m.update_stepsize()

    def get_rc(self):

        rc_list = []
        for m in self.modules():
            if isinstance(m, DictConv2d):
                rc_list.append(m.get_rc())

        return rc_list

    def forward(self, x):
        #  x = self.layer0(x)
        x = self.conv0(x)
        x = self.bn0(x)
        x = self.pool0(x)
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.pool1(x)
        x = self.dropout1(x)

        x = self.layer0(x)

        x = self.conv2(x)
        x = self.bn2(x)
        x = self.ca(x) * x
        x = self.sa(x) * x
        x = self.conv3(x)
        x = self.pool2(x)
        # print(x.shape)
        x = self.dropout2(x)
        x = self.flatten(x)
        # print(x.shape)
        x = self.leaky_relu(self.fc1(x))
        x = self.fc2(x)
        x = self.leaky_relu(x)
        x = self.fc3(x)
        x = self.sigmoid(x)
        return x


def SDCNN_model(num_classes, dropout1, dropout2):
    model = SDNet_model(num_classes=num_classes, dropout1=dropout1, dropout2=dropout2)
    return model


randomSeed = 1
random.seed(randomSeed)
torch.manual_seed(randomSeed)
np.random.seed(randomSeed)


def main():
    # 数据导入
    dataFile = r'C:\Users\sun\Desktop\SDNET\SDNet-main\data\python_energy_T.mat'
    data = scio.loadmat(dataFile)
    train_input = data['train_input']
    train_output = data['train_output']
    test_input = data['test_input']
    test_output = data['test_output']
    validate_input = data['validate_input']
    validate_output = data['validate_output']

    train_input = train_input.reshape(-1, 1, 100, 300).astype('float32')
    test_input = test_input.reshape(-1, 1, 100, 300).astype('float32')
    validate_input = validate_input.reshape(-1, 1, 100, 300).astype('float32')

    train_input = torch.from_numpy(train_input)
    train_output = torch.from_numpy(train_output)
    validate_input = torch.from_numpy(validate_input)
    validate_output = torch.from_numpy(validate_output)
    test_input = torch.from_numpy(test_input)
    test_output = torch.from_numpy(test_output)

    # 定义超参数搜索空间
    epochs = range(50, 201)
    batch_sizes = [64, 128, 256]
    dropouts1 = [0.1, 0.3, 0.5]
    dropouts2 = [0.1, 0.3, 0.5]

    # 初始化最优超参数和最高准确度
    best_hyperparams = {'epoch': None, 'batch_size': None, 'dropout1': None, 'dropout2': None}
    best_accuracy = 0.0

    # 定义随机搜索算法的迭代次数
    num_iterations = 10

    # 随机搜索算法
    for i in range(num_iterations):
        # 随机选择超参数组合
        epoch = random.choice(epochs)
        batch_size = random.choice(batch_sizes)
        dropout1 = random.choice(dropouts1)
        dropout2 = random.choice(dropouts2)

        print(f"Iteration {i+1}/{num_iterations}: epoch={epoch}, batch_size={batch_size}, dropout1={dropout1}, dropout2={dropout2}")

        # 实例化模型、损失函数和优化器
        model = SDCNN_model(num_classes=2, dropout1=dropout1, dropout2=dropout2)
        criterion = nn.BCELoss()
        optimizer = optim.Adam(model.parameters(), lr=0.001)

        # 将数据转换为PyTorch DataLoader
        train_dataset = TensorDataset(train_input, torch.tensor(train_output).float())
        valid_dataset = TensorDataset(validate_input, torch.tensor(validate_output).float())
        train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
        valid_loader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=False)

        # 实例化学习率调度器 #diff 添加学习率调度器
        scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.1)

        # 训练模型
        for e in range(epoch):
            model.train()
            for inputs, targets in train_loader:
                inputs, targets = inputs, targets
                optimizer.zero_grad()
                outputs = model(inputs)
                loss = criterion(outputs, targets)
                loss.backward()
                optimizer.step()
            scheduler.step()

        # 评估模型
        model.eval()
        correct = 0
        total = 0
        with torch.no_grad():
            for inputs, targets in valid_loader:
                inputs, targets = inputs, targets
                outputs = model(inputs)
                predicted = torch.argmax(outputs, dim=1)
                total += targets.size(0)
                targets_index = torch.argmax(targets, dim=1)
                correct += (predicted == targets_index).sum().item()

        accuracy = 100 * correct / total

        print(f"Iteration {i+1}: Accuracy={accuracy:.2f}%")

        # 更新最优超参数和最高准确度
        if accuracy > best_accuracy:
            best_hyperparams['epoch'] = epoch
            best_hyperparams['batch_size'] = batch_size
            best_hyperparams['dropout1'] = dropout1
            best_hyperparams['dropout2'] = dropout2
            best_accuracy = accuracy

    print(f"New best accuracy: {best_accuracy:.2f}% with hyperparameters {best_hyperparams}")

    # 使用找到的最佳超参数进行最终训练
    best_epoch = best_hyperparams['epoch']
    best_batch_size = best_hyperparams['batch_size']
    best_dropout1 = best_hyperparams['dropout1']
    best_dropout2 = best_hyperparams['dropout2']

    def weights_init(m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu')
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)

    # 重新实例化模型以确保权重是新的
    model = SDCNN_model(num_classes=2, dropout1=best_dropout1, dropout2=best_dropout2)
    model.apply(weights_init)
    optimizer = optim.Adam(model.parameters(), lr=0.001)

    # 使用最佳批量大小创建数据加载器
    train_loader = DataLoader(train_dataset, batch_size=best_batch_size, shuffle=True)
    valid_loader = DataLoader(valid_dataset, batch_size=best_batch_size, shuffle=False)

    # 实例化学习率调度器 #diff 添加学习率调度器
    scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.1)

    # 特征可视化准备
    feature_maps = {}
    def get_activation(name):
        def hook(model, input, output):
            feature_maps[name] = output.detach()
        return hook

    # 注册钩子 #diff 注册前向钩子以提取特征图
    for name, layer in model.named_modules():
        if isinstance(layer, nn.Conv2d) or isinstance(layer, DictConv2d):
            layer.register_forward_hook(get_activation(name))

    # 训练模型
    for e in range(best_epoch):
        model.train()
        running_loss = 0.0
        for inputs, targets in train_loader:
            inputs, targets = inputs, targets
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs.squeeze(), targets.squeeze())
            loss.backward()
            optimizer.step()
            running_loss += loss.item()  # 累加损失以计算平均损失
        scheduler.step()

        print(f'Epoch {e + 1}/{best_epoch}, Loss: {running_loss / len(train_loader):.4f}')

        # 评估模型
        model.eval()  # 设置模型为评估模式
        validation_loss = 0.0
        with torch.no_grad():
            for inputs, targets in valid_loader:
                inputs, targets = inputs, targets
                outputs = model(inputs)
                validation_loss += criterion(outputs.squeeze(), targets.squeeze()).item()

        print(f'Validation Loss: {validation_loss / len(valid_loader):.4f}')

    model.eval()
    with torch.no_grad():
        sample_inputs = validate_input[:1]
        model(sample_inputs)

    def visualize_features(feature_maps, layer_names, num_images=5):
        for layer_name in layer_names:
            act = feature_maps.get(layer_name)
            if act is None:
                continue
            act = act.cpu().numpy()
            num_channels = act.shape[1]
            plt.figure(figsize=(20, 10))
            for i in range(min(num_channels, 64)):
                plt.subplot(8, 8, i + 1)
                plt.imshow(act[0, i, :, :], cmap='viridis')
                plt.axis('off')
            plt.suptitle(f'Feature Maps of {layer_name}')
            plt.savefig(f'feature_maps_{layer_name}.png')
            plt.close()

    layers_to_visualize = ['conv0', 'conv1', 'DictConv2d', 'conv2', 'conv3']
    visualize_features(feature_maps, layers_to_visualize)

    model.eval()
    with torch.no_grad():
        predictions = model(test_input.float())
        probabilities = predictions
        predicted_labels = torch.argmax(probabilities, dim=1)
        predict = predicted_labels.cpu().numpy()
        print(predict)

    with open(r'C:\Users\sun\Desktop\SDNET\SDNet-main\predict_label.csv', 'w', newline='') as pr_file:
        writer = csv.writer(pr_file)
        for label in predict:
            writer.writerow([label])

    with open(r'C:\Users\sun\Desktop\SDNET\SDNet-main\pr.csv', 'w+') as pr_file:
        out = [f"{i[0]},{i[1]}" for i in probabilities]
        pr_file.write("\n".join(out))

    # 调用函数保存预测结果
    # save_predictions_to_csv(probabilities.cpu().numpy(), 'pr.csv')

    def save_model_complete(model, filename=r'C:\Users\sun\Desktop\SDNET\SDNet-main\sdnet_model.pth'):
        torch.save(model.state_dict(), filename)
        print(f"Complete model saved as {filename}")

    save_model_complete(model)


if __name__ == '__main__':
    main()

原文地址:https://blog.csdn.net/yyfhq/article/details/143483728

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!