【数学二】一元函数积分学-不定积分与定积分的计算-定积分的换元积分法、分部积分法
考试要求
1、理解原函数的概念,理解不定积分和定积分的概念.
2、掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
3、会求有理函数、三角函数有理式和简单无理函数的积分.
4、理解积分上限的函数,会求它的导数,掌握牛顿一菜布尼茨公式.
5、了解反常积分的概念,会计算反常积分.
6、掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.
不定积分与定积分的计算
定积分的换元积分法
定理
设
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上连续;
x
=
φ
(
t
)
x=\varphi(t)
x=φ(t)满足条件:
a
=
φ
(
a
)
,
b
=
φ
(
b
)
a=\varphi(a),b=\varphi(b)
a=φ(a),b=φ(b),并且当
t
t
t在以
α
,
β
\alpha,\beta
α,β为端点的闭区间
I
I
I上变动时,
a
≤
φ
(
t
)
≤
b
,
φ
′
(
t
)
a\le \varphi(t)\le b,\varphi^{'}(t)
a≤φ(t)≤b,φ′(t)连续,则有定积分的换元积分公式:
∫
a
b
f
(
x
)
d
x
=
∫
α
β
f
(
φ
(
t
)
)
φ
′
(
t
)
d
t
\int_{a}^{b}f(x)dx=\int_{\alpha}^{\beta}f(\varphi(t))\varphi^{'}(t)dt
∫abf(x)dx=∫αβf(φ(t))φ′(t)dt
练习1
:
∫
0
a
a
2
−
x
2
d
x
=
\int_{0}^{a}\sqrt{a^2-x^2}dx=
∫0aa2−x2dx=?
解
: 令 x = a sin t , 由 x ∈ [ 0 , 1 ] ⇒ t ∈ [ 0 , π 2 ] ∫ 0 a a 2 − x 2 d x ⟹ x = a sin t ∫ 0 π 2 a 2 − ( a sin t ) 2 d ( a sin t ) = ∫ 0 π 2 a cos t . a cos t d t = a 2 ∫ 0 π 2 1 + cos 2 t 2 d t = a 2 2 [ t ∣ 0 π 2 + sin 2 t 2 ∣ 0 π 2 ] = π a 2 4 令x=a\sin t ,由x\in[0,1]\Rightarrow t\in[0,\frac{\pi}{2}] \\ \quad \\ \int_{0}^{a}\sqrt{a^2-x^2}dx \stackrel{x=a\sin t}\Longrightarrow \int_{0}^{\frac{\pi}{2}}\sqrt{a^2-(a\sin t )^2}d(a\sin t ) \\ \quad \\ =\int_{0}^{\frac{\pi}{2}}a\cos t.a\cos t dt\\ \quad \\ =a^2\int_{0}^{\frac{\pi}{2}}\frac{1+\cos 2t}{2} dt\\ \quad \\ =\frac{a^2}{2}[t|_{0}^{\frac{\pi}{2}}+\frac{\sin 2t}{2}|_{0}^{\frac{\pi}{2}}]\\ \quad \\ =\frac{\pi a^2}{4}\quad\quad\quad\quad\quad\quad 令x=asint,由x∈[0,1]⇒t∈[0,2π]∫0aa2−x2dx⟹x=asint∫02πa2−(asint)2d(asint)=∫02πacost.acostdt=a2∫02π21+cos2tdt=2a2[t∣02π+2sin2t∣02π]=4πa2
练习2
:若
f
(
x
)
f(x)
f(x)为连续函数,则
d
x
d
(
∫
0
x
f
(
x
−
t
)
d
t
)
=
\frac{dx}{d}(\int_{0}^{x}f(x-t)dt)=
ddx(∫0xf(x−t)dt)=?
解
: 令 ξ = x − t ,由 t ∈ [ 0 , x ] ⇒ ξ ∈ [ x , 0 ] ∫ 0 x f ( x − t ) d t ⟹ ξ = x − t ∫ x 0 f ( ξ ) d ( x − ξ ) = − ∫ x 0 f ( ξ ) d ξ = ∫ 0 x f ( ξ ) d ξ ⇒ d x d ( ∫ 0 x f ( x − t ) d t ) = f ( x ) 令\xi=x-t,由t\in[0,x] \Rightarrow \xi\in[x,0] \\ \quad \\ \int_{0}^{x}f(x-t)dt \stackrel{\xi=x-t}\Longrightarrow \int_{x}^{0}f(\xi)d(x-\xi)=- \int_{x}^{0}f(\xi)d\xi \\ \quad \\ =\int_{0}^{x}f(\xi)d\xi \\ \quad \\ \Rightarrow \frac{dx}{d}(\int_{0}^{x}f(x-t)dt)=f(x) 令ξ=x−t,由t∈[0,x]⇒ξ∈[x,0]∫0xf(x−t)dt⟹ξ=x−t∫x0f(ξ)d(x−ξ)=−∫x0f(ξ)dξ=∫0xf(ξ)dξ⇒ddx(∫0xf(x−t)dt)=f(x)
分部积分法
定理
设
u
(
x
)
,
v
(
x
)
u(x),v(x)
u(x),v(x)均有连续导数,则
∫
u
(
x
)
v
′
(
x
)
d
x
=
u
(
x
)
v
(
x
)
−
∫
v
(
x
)
u
′
(
x
)
d
x
∫
a
b
u
(
x
)
v
′
(
x
)
d
x
=
u
(
x
)
v
(
x
)
∣
a
b
−
∫
a
b
v
(
x
)
u
′
(
x
)
d
x
\int u(x)v^{'}(x)dx=u(x)v(x)-\int v(x)u^{'}(x)dx \\ \quad \\ \int_{a}^{b} u(x)v^{'}(x)dx=u(x)v(x)|_{a}^{b}-\int_{a}^{b} v(x)u^{'}(x)dx
∫u(x)v′(x)dx=u(x)v(x)−∫v(x)u′(x)dx∫abu(x)v′(x)dx=u(x)v(x)∣ab−∫abv(x)u′(x)dx
练习1
:
∫
ln
x
d
x
\int \ln x dx
∫lnxdx
解题1
: ∫ ln x d x = x ln x − ∫ x d ln x = x ln x − x + C \int \ln x dx=x\ln x -\int xd \ln x=x\ln x-x+C ∫lnxdx=xlnx−∫xdlnx=xlnx−x+C
练习2
:
∫
x
2
sin
x
d
x
\int x^2\sin xdx
∫x2sinxdx
解题2
: ∫ x 2 sin x d x = x 2 . ( − cos x ) − ∫ ( − cos x ) 2 x d x = 2 ∫ x cos x d x − x 2 cos x = 2 [ x sin x − ∫ sin x d x ] − x 2 cos x = 2 x sin x + 2 cos x − x 2 cos x + C \int x^2\sin xdx=x^2.(-\cos x)-\int (-\cos x)2xdx \\ \quad \\=2\int x\cos x dx-x^2\cos x \\ \quad \\ =2[x\sin x-\int \sin xdx] -x^2\cos x \\ \quad \\ =2x\sin x+2\cos x-x^2\cos x+C ∫x2sinxdx=x2.(−cosx)−∫(−cosx)2xdx=2∫xcosxdx−x2cosx=2[xsinx−∫sinxdx]−x2cosx=2xsinx+2cosx−x2cosx+C
练习3
:
∫
0
π
2
e
x
sin
x
d
x
\int_{0}^{\frac{\pi}{2}}e^x\sin xdx
∫02πexsinxdx
解题3
: ∫ 0 π 2 e x sin x d x = e x sin x ∣ 0 π 2 − ∫ 0 π 2 e x cos x d x = e x sin x ∣ 0 π 2 − [ e x cos x ∣ 0 π 2 + ∫ 0 π 2 e x sin x d x ] = e π 2 + 1 − ∫ 0 π 2 e x sin x d x ∫ 0 π 2 e x sin x d x = e π 2 + 1 − ∫ 0 π 2 e x sin x d x 合并同类项计算得: ∫ 0 π 2 e x sin x d x = e π 2 + 1 2 \int_{0}^{\frac{\pi}{2}}e^x\sin xdx=e^x\sin x|_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}}e^x\cos xdx \\ \quad \\ =e^x\sin x|_{0}^{\frac{\pi}{2}}-[e^x\cos x|_{0}^{\frac{\pi}{2}}+\int_{0}^{\frac{\pi}{2}}e^x\sin xdx] \\ \quad \\ =e^{\frac{\pi}{2}}+1-\int_{0}^{\frac{\pi}{2}}e^x\sin xdx \\ \quad \\ \int_{0}^{\frac{\pi}{2}}e^x\sin xdx=e^{\frac{\pi}{2}}+1-\int_{0}^{\frac{\pi}{2}}e^x\sin xdx \\ \quad \\ 合并同类项计算得:\int_{0}^{\frac{\pi}{2}}e^x\sin xdx=\frac{e^{\frac{\pi}{2}}+1}{2} ∫02πexsinxdx=exsinx∣02π−∫02πexcosxdx=exsinx∣02π−[excosx∣02π+∫02πexsinxdx]=e2π+1−∫02πexsinxdx∫02πexsinxdx=e2π+1−∫02πexsinxdx合并同类项计算得:∫02πexsinxdx=2e2π+1
练习4
:
∫
0
1
x
e
x
1
+
e
x
d
x
\int_{0}^1\frac{xe^x}{\sqrt{1+e^x}}dx
∫011+exxexdx
解题4
: ∫ 0 1 x e x 1 + e x d x = ∫ 0 1 x d ( 2 1 + e x ) = 2 x 1 + e x ∣ 0 1 − ∫ 0 1 2 1 + e x d x ⟹ 1 + e x = t = 2 1 + e − 2 ∫ 2 1 + e t d ( ln ( t 2 − 1 ) ) = 2 1 + e − 2 ∫ 2 1 + e [ 2 + 2 t 2 − 1 ] d t = 4 2 − 2 1 + e − 2 ∫ 2 1 + e [ 2 t 2 − 1 ] d t = 4 2 − 2 1 + e − 2 ∫ 2 1 + e [ 1 t − 1 − 1 t + 1 ] d t = 4 2 − 2 1 + e − 2 ln t − 1 t + 1 ∣ 2 1 + e = 4 2 − 2 1 + e − 2 ln 1 + e − 1 1 + e + 1 + 2 ln 2 − 1 2 + 1 = 4 2 − 2 1 + e − 4 ln ( 1 + e − 1 ) + 2 + 4 ln ( 2 − 1 ) \int_{0}^1\frac{xe^x}{\sqrt{1+e^x}}dx=\int_{0}^1xd(2\sqrt{1+e^x})\\ \quad \\ =2x\sqrt{1+e^x}|_{0}^1-\int_{0}^12\sqrt{1+e^x}dx \\ \quad \\ \stackrel{\sqrt{1+e^x}=t}\Longrightarrow=2\sqrt{1+e}-2\int_{\sqrt{2}}^{\sqrt{1+e}}td(\ln(t^2-1))\\ \quad \\ =2\sqrt{1+e}-2\int_{\sqrt{2}}^{\sqrt{1+e}}[2+\frac{2}{t^2-1}]dt\\ \quad \\ =4\sqrt{2}-2\sqrt{1+e}-2\int_{\sqrt{2}}^{\sqrt{1+e}}[\frac{2}{t^2-1}]dt \\ \quad \\ =4\sqrt{2}-2\sqrt{1+e}-2\int_{\sqrt{2}}^{\sqrt{1+e}}[\frac{1}{t-1}-\frac{1}{t+1}]dt\\ \quad \\ =4\sqrt{2}-2\sqrt{1+e}-2\ln \frac{t-1}{t+1}|_{\sqrt{2}}^{\sqrt{1+e}}\\ \quad \\ =4\sqrt{2}-2\sqrt{1+e}-2\ln \frac{\sqrt{1+e}-1}{\sqrt{1+e}+1}+2\ln \frac{\sqrt{2}-1}{\sqrt{2}+1}\\ \quad \\ =4\sqrt{2}-2\sqrt{1+e}-4\ln(\sqrt{1+e}-1)+2+4\ln(\sqrt{2}-1) ∫011+exxexdx=∫01xd(21+ex)=2x1+ex∣01−∫0121+exdx⟹1+ex=t=21+e−2∫21+etd(ln(t2−1))=21+e−2∫21+e[2+t2−12]dt=42−21+e−2∫21+e[t2−12]dt=42−21+e−2∫21+e[t−11−t+11]dt=42−21+e−2lnt+1t−1∣21+e=42−21+e−2ln1+e+11+e−1+2ln2+12−1=42−21+e−4ln(1+e−1)+2+4ln(2−1)
练习5
∫
arcsin
e
x
e
x
d
x
\int \frac{\arcsin e^x}{e^x}dx
∫exarcsinexdx
解
: 令 arcsin e x = t , x = ln ( sin t ) ∫ t e ln ( sin t ) d ( ln ( sin t ) ) = ∫ t cos t sin 2 t d t = − ∫ t d 1 sin t = − t sin t + ∫ 1 sin t d t = ∫ csc x d x − t sin t = ln ∣ csc t − cot t ∣ − t sin t + C = − e − x arcsin e x + ln ∣ e − x − e − 2 x − 1 ∣ + C 令\arcsin e^x=t,x=\ln(\sin t) \\ \quad \\ \int \frac{t}{e^{\ln(\sin t)}}d(\ln(\sin t))= \int \frac{t\cos t}{\sin^2 t}dt \\ \quad \\=-\int td\frac{1}{\sin t}=-\frac{t}{\sin t}+\int \frac{1}{\sin t}dt=\int \csc x dx-\frac{t}{\sin t}\\ \quad \\=\ln|\csc t - \cot t| -\frac{t}{\sin t}+C\\ \quad \\ =-e^{-x}\arcsin e^x+\ln|e^{-x} -\sqrt{e^{-2x}-1}|+C 令arcsinex=t,x=ln(sint)∫eln(sint)td(ln(sint))=∫sin2ttcostdt=−∫tdsint1=−sintt+∫sint1dt=∫cscxdx−sintt=ln∣csct−cott∣−sintt+C=−e−xarcsinex+ln∣e−x−e−2x−1∣+C
练习6
:
G
′
(
x
)
=
arcsin
(
x
−
1
)
2
,
G
(
0
)
=
0
,
求
∫
0
1
G
(
x
)
d
x
G^{'}(x)=\arcsin (x-1)^2,G(0)=0,求\int_0^1G(x)dx
G′(x)=arcsin(x−1)2,G(0)=0,求∫01G(x)dx
解
: ∫ 0 1 G ( x ) d x = G ( x ) . x ∣ 0 1 − ∫ 0 1 x d G ( x ) = G ( 1 ) − ∫ 0 1 x G ′ ( x ) d x = ∫ 0 1 G ′ ( x ) d x − ∫ 0 1 x G ′ ( x ) d x = ∫ 0 1 ( G ′ ( x ) − x G ′ ( x ) ) d x = − ∫ 0 1 ( x − 1 ) arcsin ( x − 1 ) 2 d x = − 1 2 ∫ 0 1 arcsin ( x − 1 ) 2 d ( x − 1 ) 2 ⟹ t = ( x − 1 ) 2 − 1 2 ∫ 1 0 arcsin t d t = 1 2 ∫ 0 1 arcsin t d t = 1 2 [ t . arcsin t ∣ 0 1 − ∫ 0 1 t 1 − t 2 d t ] = 1 2 [ t . arcsin t ∣ 0 1 + ∫ 0 1 d ( 1 − t 2 ) ] = 1 2 [ t . arcsin t ∣ 0 1 + 1 − t 2 ∣ 0 1 ] = π 4 − 1 2 \int_0^1G(x)dx=G(x).x|_0^1-\int_0^1xdG(x) \\ \quad \\ =G(1)-\int_0^1xG^{'}(x)dx\\ \quad \\=\int_0^1G^{'}(x)dx-\int_0^1xG^{'}(x)dx\\ \quad \\ =\int_0^1(G^{'}(x)-xG^{'}(x)) dx \\ \quad \\ =-\int_0^1(x-1)\arcsin (x-1)^2dx\\ \quad \\ =-\frac{1}{2}\int_0^1\arcsin (x-1)^2d(x-1)^2 \\ \quad \\ \stackrel{t=(x-1)^2}\Longrightarrow -\frac{1}{2}\int_1^0\arcsin t dt=\frac{1}{2}\int_0^1\arcsin t dt \\ \quad \\ =\frac{1}{2}[t.\arcsin t|_0^1-\int_0^1\frac{t}{\sqrt{1-t^2}}dt] \\ \quad \\ =\frac{1}{2}[t.\arcsin t|_0^1+\int_0^1d(\sqrt{1-t^2})] \\ \quad \\ =\frac{1}{2}[t.\arcsin t|_0^1+\sqrt{1-t^2}|_0^1]=\frac{\pi}{4}-\frac{1}{2} ∫01G(x)dx=G(x).x∣01−∫01xdG(x)=G(1)−∫01xG′(x)dx=∫01G′(x)dx−∫01xG′(x)dx=∫01(G′(x)−xG′(x))dx=−∫01(x−1)arcsin(x−1)2dx=−21∫01arcsin(x−1)2d(x−1)2⟹t=(x−1)2−21∫10arcsintdt=21∫01arcsintdt=21[t.arcsint∣01−∫011−t2tdt]=21[t.arcsint∣01+∫01d(1−t2)]=21[t.arcsint∣01+1−t2∣01]=4π−21
原文地址:https://blog.csdn.net/henni_719/article/details/142951126
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!