求函数最小值-torch版
目标:torch实现下面链接中的梯度下降法
先计算 的导函数 ,然后计算导函数 在处的梯度 (导数)
让 沿着 梯度的负方向移动,
自变量 的更新过程如下
torch代码实现如下
import torch
x = torch.tensor([7.5],requires_grad=True)
# print(x.grad)
optimizer = torch.optim.SGD([x], lr=1)
print('x_0 = {}'.format(x))
for i in range(10):
y = x * x
optimizer.zero_grad()
y.backward()
optimizer.step()
print('x_{} = {}'.format(i+1,x))
运行效果如下:
x_0 = tensor([7.5000], requires_grad=True)
x_1 = tensor([-7.5000], requires_grad=True)
x_2 = tensor([7.5000], requires_grad=True)
x_3 = tensor([-7.5000], requires_grad=True)
x_4 = tensor([7.5000], requires_grad=True)
x_5 = tensor([-7.5000], requires_grad=True)
x_6 = tensor([7.5000], requires_grad=True)
x_7 = tensor([-7.5000], requires_grad=True)
x_8 = tensor([7.5000], requires_grad=True)
x_9 = tensor([-7.5000], requires_grad=True)
x_10 = tensor([7.5000], requires_grad=True)
给梯度加系数
我们可以给 梯度 加个系数,如下
torch代码实现如下
import torch
x = torch.tensor([7.5],requires_grad=True)
# print(x.grad)
optimizer = torch.optim.SGD([x], lr=0.01)
print('x_0 = {}'.format(x))
for i in range(10):
y = x * x
optimizer.zero_grad()
y.backward()
optimizer.step()
print('x_{} = {}'.format(i+1,x))
运行效果如下:
x_0 = tensor([7.5000], requires_grad=True)
x_1 = tensor([7.3500], requires_grad=True)
x_2 = tensor([7.2030], requires_grad=True)
x_3 = tensor([7.0589], requires_grad=True)
x_4 = tensor([6.9178], requires_grad=True)
x_5 = tensor([6.7794], requires_grad=True)
x_6 = tensor([6.6438], requires_grad=True)
x_7 = tensor([6.5109], requires_grad=True)
x_8 = tensor([6.3807], requires_grad=True)
x_9 = tensor([6.2531], requires_grad=True)
x_10 = tensor([6.1280], requires_grad=True)
调迭代次数
发现 变化的很慢,我们可以增加迭代次数,如下
import torch
x = torch.tensor([7.5],requires_grad=True)
# print(x.grad)
optimizer = torch.optim.SGD([x], lr=0.01)
print('x_0 = {}'.format(x))
for i in range(200):
y = x * x
optimizer.zero_grad()
y.backward()
optimizer.step()
print('x_{} = {}'.format(i+1,x))
运行结果如下:
x_0 = tensor([7.5000], requires_grad=True)
x_1 = tensor([7.3500], requires_grad=True)
x_2 = tensor([7.2030], requires_grad=True)
...
x_199 = tensor([0.1346], requires_grad=True)
x_200 = tensor([0.1319], requires_grad=True)
调梯度系数
我们把 0.01 换成 0.1 试试
import torch
x = torch.tensor([7.5],requires_grad=True)
# print(x.grad)
optimizer = torch.optim.SGD([x], lr=0.1)
print('x_0 = {}'.format(x))
for i in range(10):
y = x * x
optimizer.zero_grad()
y.backward()
optimizer.step()
print('x_{} = {}'.format(i+1,x))
运行结果如下:
x_0 = tensor([7.5000], requires_grad=True)
x_1 = tensor([6.], requires_grad=True)
x_2 = tensor([4.8000], requires_grad=True)
x_3 = tensor([3.8400], requires_grad=True)
x_4 = tensor([3.0720], requires_grad=True)
x_5 = tensor([2.4576], requires_grad=True)
x_6 = tensor([1.9661], requires_grad=True)
x_7 = tensor([1.5729], requires_grad=True)
x_8 = tensor([1.2583], requires_grad=True)
x_9 = tensor([1.0066], requires_grad=True)
x_10 = tensor([0.8053], requires_grad=True)
原文地址:https://blog.csdn.net/JIA_NG_FA_N/article/details/140141744
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!