【人工智能】从零开始用Python实现逻辑回归模型:深入理解逻辑回归的原理与应用
解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!
逻辑回归是一种经典的统计学习方法,用于分类问题尤其是二分类问题。它通过学习数据的特征和目标标签之间的关系,输出样本属于某个类别的概率。本文将从零开始用Python实现逻辑回归模型,深入探讨其数学原理,并逐步讲解如何编写代码实现。我们会涵盖从数据预处理、特征归一化、梯度下降算法到模型训练的每一个细节。通过丰富的代码示例和详细的中文注释,本文将帮助读者从头掌握逻辑回归模型的构建与优化。
正文
目录
- 逻辑回归简介
- 逻辑回归的数学原理
- 2.1 逻辑回归的假设函数
- 2.2 损失函数的推导
- 2.3 梯度下降优化
- 从零开始实现逻辑回归模型
- 3.1 数据预处理
- 3.2 逻辑回归模型类的定义
- 3.3 编写模型训练方法
- 3.4 编写模型预测方法
- 逻辑回归模型的性能评估
- 4.1 准确率与混淆矩阵
- 4.2 交叉验证
- 完整代码实现
- 实验与结果分析
- 总结
1. 逻辑回归简介
逻辑回归是一种广泛应用的分类模型,通常用于二分类问题。不同于线性回归直接输出一个数值,逻辑回归使用一个Sigmoid函数将预测值映射到[0, 1]区间,以此表示样本属于某个类别的概率。逻辑回归的目标是找到最佳的参数,使得模型能够正确地将输入映射到相应的类别。
2. 逻辑回归的数学原理
逻辑回归的数学基础是线性模型,通过线性组合的输入特征生成一个预测值,然后利用Sigmoid函数将其转换为概率。
2.1 逻辑回归的假设函数
逻辑回归的假设函数为:
h θ ( x ) = σ ( θ T x ) = 1 1 + e − θ T x h_{\theta}(x) = \sigma(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}} hθ(x)=σ(θTx)=1+e−θTx1
其中:
- h θ ( x ) h_{\theta}(x) hθ(x) 是预测的概率值;
- θ \theta θ 是模型的参数向量;
- x x x 是特征向量;
- σ ( z ) = 1 1 + e − z \sigma(z) = \frac{1}{1 + e^{-z}} σ(z)=1+e−z1是Sigmoid激活函数。
Sigmoid函数的输出在(0, 1)之间,表示样本属于正类(标签为1)的概率。
2.2 损失函数的推导
逻辑回归的目标是最小化损失函数(Cost Function),通常选择对数似然函数作为损失函数。对于单个样本,损失函数为:
L ( h θ ( x ) , y ) = − y log ( h θ ( x ) ) − ( 1 − y ) log ( 1 − h θ ( x ) ) L(h_{\theta}(x), y) = -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x)) L(hθ(x),y)=−
原文地址:https://blog.csdn.net/nokiaguy/article/details/143645196
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!