自学内容网 自学内容网

【基础算法总结】链表篇

一, 链表常用技巧和操作总结

有关链表的算法题也是一类常见并且经典的题型,这些题要使用数据结构中我们手搓的链表结构,也要使用STL中的 list 容器

下面是几点常用操作的总结
(1) 善于画图
(2) 引入虚拟头结点
方便处理边界情况,就是当没节点第一次头插或尾插的时候的那个判断,引入虚拟头结点就可以避免这个判断(写成 ptail = newHead)
(3) 不要吝啬空间,大胆定义变量。
(4) 快慢双指针的使用
主要应用是判环,找链表中环的入口,找链表中倒数第 n 个节点
(5) 解决链表类的题,一般是:创建一个新节点,尾插操作,头插操作

我们在学习数据结构时也做过许多有关链表类的经典题目,请浏览【C/数据结构与算法】10道链表经典OJ
里面的一些题目与本篇文章的题目也是有关联的,这篇文章算是进阶篇

二,算法原理和代码实现

2.两数相加

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

算法原理:

这道题是一道简单的模拟题,模拟两数相加即可
定义两个指针 cur1和cur2用于遍历两个链表,再定义一个整数 t 用于进位。用 t 和每个节点的值相加,取出 t 的个位创建新节点
在这里插入图片描述

细节问题:

(1) 这里要注意的细节就是链表是逆序的,其实这也是方便我们操作,因为我们可以直接从个位开始相加
(2) 1. 循环条件:cur1 || cur2 || t
这里要或t是原因:当两个指针都走完时,t里可能还有进位,还需要尾插

(3) 要销毁哨兵位头节点

代码实现:

class Solution 
{
public:
    ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) 
    {
        ListNode* cur1 = l1, *cur2 = l2;
        ListNode* newHead = new ListNode(), *ptail = newHead; // 虚拟头节点
        int t = 0; // 记录进位
        
        while(cur1 || cur2 || t)
        {

            if(cur1) 
            {
                t += cur1->val;
                cur1 = cur1->next;
            }

            if(cur2) 
            {
                t += cur2->val;
                cur2 = cur2->next;
            }
            
            ListNode* newNode = new ListNode(t % 10);
            ptail->next = newNode;
            ptail = newNode;
            ptail->next = nullptr;
            t /= 10;
        }

        ListNode* pcur = newHead->next;
        delete newHead;

        return pcur;
    }
};

24.两两交换链表中的节点

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

算法原理:

本题也是一道模拟题,重点是画图,看图写代码!!! 定义四个指针
![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/dd888c8a2f4e4bf098ccdb8d4b4c7392.png
根据交换后的链表,进行指针的修改(绿色字),一直循环迭代
结束条件:
(1) 偶数个节点时:
cur 已经指向空了,next 和 nnext 也无效了,此时结束循环。
在这里插入图片描述
(2) 奇数个节点时:
next 已经指向空了, nnext 无效了,此时也结束循环。
在这里插入图片描述

代码实现:

class Solution 
{
public:
    ListNode* swapPairs(ListNode* head) 
    {
        if(head == nullptr) return nullptr;

        ListNode* newHead = new ListNode(), *prev = newHead;
        ListNode* cur = head, *next = cur->next;
        ListNode* nnext = nullptr;

        if(next) nnext = next->next;

        prev->next = cur;

        while(cur && next)
        {
            // 交换节点
            prev->next = next;
            next->next = cur;
            cur->next = nnext;

            // 修改指针
            prev = cur;
            cur = prev->next;
            if(cur) next = cur->next;
            if(next) nnext = next->next;
        }

        ListNode* pcur = newHead->next;
        delete newHead;

        return pcur;
    }
};

143.重排链表

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

算法原理:

这道题比较有综合性,通过分析可以发现:
重排后的链表 = 合并两个链表(原链表的前半段 + 原链表的后半段逆置)

在这里插入图片描述
所以这道题的思路是:
(1) 找到链表的中间节点
(2) 把后半部分逆序
(3) 合并两个链表

代码实现:

class Solution 
{
public:
    // 找中间节点
    ListNode* FindMiddleNode(ListNode* head)
    {
        ListNode* slow = head, *fast = head, *prev = head;
        while(fast && fast->next)
        {
            prev = slow;
            slow = slow->next;
            fast = fast->next->next;
        }
        prev->next = nullptr; // 与后半段断开

        return slow;
    }

    // 逆置后半部分链表
    ListNode* reverseList(ListNode* head)
    {
        ListNode* phead = head, *ptail = nullptr;
        while(phead)
        {
            ListNode* next = phead->next;
            // 头插法
            phead->next = ptail;
            ptail = phead;
            phead = next;
        }

        return ptail;
    }

    void reorderList(ListNode* head) 
    {
        // 处理特殊情况
        if(head->next == nullptr || head->next->next == nullptr) return;

        ListNode* mNode = FindMiddleNode(head);
        ListNode* rNode = reverseList(mNode);

        // 合并两个链表
        ListNode* newHead = new ListNode(), *ptail = newHead;
        ListNode* n1 = head, *n2 = rNode;
        while(n1 && n2)
        {
            ptail->next = n1;
            ptail = ptail->next;
            n1 = n1->next;

            ptail->next = n2;
            ptail = ptail->next;
            n2 = n2->next;
        }

        if(n1) ptail->next = n1;
        if(n2) ptail->next = n2;

        delete newHead;
    }
};

23.合并k个升序链表

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

算法原理:

解法1:暴力解法,利用"合并两个有序链表"的思想。先把第一个和第二个链表进行合并,得到一个新链表,再用新链表和第三个链表进行合并…。
假设有 k 个链表,每条链表的平均节点有 n 个,则时间复杂度为:n(k-1) + n(k-2) + n(k-3) + … + n --> O(n * k^2)。大概率超时

解法2:利用优先级队列进行优化
假设有 k 个链表,建一个大小为 k 的小根堆,把所有链表的第一个节点都扔进小根堆中,堆顶节点就是最小值,取出堆顶节点和虚拟头结点进行链接,再移到下一个节点…
合并链接+找出最小值的节点总的时间复杂度为:O(n * k * logk)

易错/细节问题:

(1) 优先级队列的第三个模板参数不能直接写成 greater<ListNode * >,因为这样比较的是地址,要写一个仿函数!!
(2) 把链表的所有头节点都入队列时,要注意传递的链表为空的处理

代码实现:

class Solution
{
    struct cmp
    {
        bool operator()(const ListNode* l1, const ListNode* l2)
        {
            return l1->val > l2->val;
        }
    };
public:
    ListNode* mergeKLists(vector<ListNode*>& lists)
    {
    // 建小根堆
        priority_queue<ListNode*, vector<ListNode*>, cmp> pq;

// 把所有头结点进小根堆
        for (auto l : lists)
            if (l) pq.push(l);

// 合并k个有序链表
        ListNode* newhead = new ListNode(), * ptail = newhead;
        while (!pq.empty())
        {
            ListNode* pcur = pq.top();
            pq.pop();
            ptail->next = pcur;
            ptail = pcur;
            if (pcur->next) pq.push(pcur->next);
        }

        ListNode* ret = newhead->next;
        delete newhead;

        return ret;
    }
};

解法3:分治-递归
和归并分治的思想一样:
在这里插入图片描述
假设有 k 个链表,那么就有 logk 层,递归回退时每个链表的每个节点都执行 logk 次合并,每个链表的平均节点有 n 个,所以时间复杂度为:O(n * k * logk)

易错/细节问题:

(1) 有两个递归出口:区间不存在和区间里只有一个链表
(2) 合并两个有序链表时,链表为空的情况

代码实现:

class Solution 
{
public:
    ListNode* mergeKLists(vector<ListNode*>& lists) 
    {
        return merge(lists, 0, lists.size()-1);
    }

    ListNode* merge(vector<ListNode*>& lists, int left, int right)
    {
        if(left > right) return nullptr;
        if(left == right) return lists[left];

        // 找中点
        int mid = left + (right - left) / 2;
        // [left, mid] [mid+1, right]

        // 合并左右两边
        ListNode* l1 = merge(lists, left, mid);
        ListNode* l2 = merge(lists, mid+1, right);

        // 合并两个有序链表
        return mergeTwoList(l1, l2);
    }

    ListNode* mergeTwoList(ListNode* l1, ListNode* l2)
    {
        // 处理特殊情况
        if(l1 == nullptr) return l2;
        if(l2 == nullptr) return l1;

        ListNode head; // 把虚拟节点开在栈上
         head.next = nullptr;
        ListNode* ptail = &head;
        while(l1 && l2)
        {
            if(l1->val < l2->val)
            {
                ptail->next = l1;
                ptail = ptail->next;
                l1 = l1->next;
            }
            else
            {
                ptail->next = l2;
                ptail = ptail->next;
                l2 = l2->next;
            }
        }

        if(l1) ptail->next = l1;
        if(l2) ptail->next = l2;

        return head.next;
    }
};

25.k个一组翻转链表

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

算法原理:

这也是一道模拟题,算法流程比较简单
(1) 先求出需要逆序多少组:n
(2) 重复 n 次,长度为 k 的链表的逆序即可 。
(3) 把不需要逆序的接上。
在这里插入图片描述

细节问题:

(1) 这里需要记录第n次头插的开始位置,每次进行新一轮逆序时都要记住该位置。
(2) 如果使用while循环,则每逆序完一组后 k 要重新赋值,不然就一直都是k==0了

代码实现:

class Solution
{
public:
    ListNode* reverseKGroup(ListNode* head, int k)
    {
        // 先求出要逆序多少组
        int n = 0;
        ListNode* phead = head;
        while (phead)
        {
            phead = phead->next;
            n++;
        }
        n /= k;

        // 重复 n 次长度为 k 的链表逆序
        phead = head;
        ListNode* newhead = new ListNode(), * prev = newhead;
        for (int i = 0; i < n; i++)
        {
            ListNode* tmp = phead; // 记录每一组的起点
            for (int j = 0; j < k; j++)
            {
                ListNode* next = phead->next;
                phead->next = prev->next;
                prev->next = phead;
                phead = next;
            }
            prev = tmp;
        }

        // 把不需要翻转的接上
        prev->next = phead;

        ListNode* ret = newhead->next;
        delete newhead;

        return ret;
    }
};

三,算法总结

通过上面的若干道题目可以发现,大多数链表类的题目本质上是模拟题,最重要的就是画图,分清各个指针指向哪里。


原文地址:https://blog.csdn.net/2301_77900444/article/details/141870030

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!