(超详细)YOLOV5改进-添加SimAM注意力机制
1、在yolov5/models下面新建一个SimAM.py文件,在里面放入下面的代码
代码如下:
import torch
import torch.nn as nn
class SimAM(torch.nn.Module):
def __init__(self, e_lambda=1e-4):
super(SimAM, self).__init__()
self.activaton = nn.Sigmoid()
self.e_lambda = e_lambda
def __repr__(self):
s = self.__class__.__name__ + '('
s += ('lambda=%f)' % self.e_lambda)
return s
@staticmethod
def get_module_name():
return "simam"
def forward(self, x):
b, c, h, w = x.size()
n = w * h - 1
x_minus_mu_square = (x - x.mean(dim=[2, 3], keepdim=True)).pow(2)
y = x_minus_mu_square / (4 * (x_minus_mu_square.sum(dim=[2, 3], keepdim=True) / n + self.e_lambda)) + 0.5
return x * self.activaton(y)
2、找到yolo.py文件,进行更改内容
在26行加一个from models SimAM import SimAM
, 保存即可
3、找到自己想要更改的yaml文件,我选择的yolov5s.yaml文件(你可以根据自己需求进行选择),将刚刚写好的模块SimAM加入到yolov5s.yaml里面,并更改一些内容。更改如下
运行一下,发现出来了SimAM
结果还没出来呢,还在跑,
跑100个epoch,还不知道跑到啥时候哈哈哈哈!结果后放!
2024/01/10
结果出来了
降了0.00几,继续尝试换别的注意力机制了
原文地址:https://blog.csdn.net/qq_44421796/article/details/135497544
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!