自学内容网 自学内容网

Python和MATLAB及C++和Fortran胶体粒子数学材料学显微镜学微观流变学及光学计算

🎯要点

  1. 二维成像拥挤胶体粒子检测算法
  2. 粒子的局部结构和动力学分析
  3. 椭圆粒子成链动态过程定量分析算法
  4. 小颗粒的光散射和吸收
  5. 活跃物质模拟群体行为
  6. 提取粒子轨迹粘弹性,计算剪切模量
  7. 计算悬浮液球形粒子多体流体动力学
  8. 概率规划全息图跟踪和表征粒子位置、大小和折射率
    在这里插入图片描述

Python粒子滤波器算法

为了简化,我们给出已经推导出的线性状态空间模型的粒子滤波器算法。粒子滤波器是针对以下状态空间模型推导出来的:
x k = A x k − 1 + B u k − 1 + w k − 1 y k = C x k + v k ( 1 ) \begin{aligned} & x _k=A x _{k-1}+B u _{k-1}+ w _{k-1} \\ & y _k=C x _k+ v _k \end{aligned}\qquad(1) xk=Axk1+Buk1+wk1yk=Cxk+vk(1)
其中 x k ∈ R n x _k \in R ^n xkRn 是离散时间步长 k k k 的状态向量, u k − 1 ∈ R m 1 u _{k-1} \in R ^{m_1} uk1Rm1 是时间步长 k − 1 k-1 k1 的控制输入向量, w k − 1 ∈ R m 2 w _{k-1} \in R ^{m_2} wk1Rm2 是时间步长 k − 1 k-1 k1 处的过程扰动向量(过程噪声向量), y k ∈ R r y _k \in R ^r ykRr 是时间步长 k k k 处观测到的输出矢量, v k ∈ R r v _k \in R ^r vkRr 是离散时间步长 k k k 处的测量噪声向量, A A A B B B C C C是系统矩阵。

假设过程扰动向量 w k w _k wk 服从正态分布,具有零均值和规定的协方差矩阵,即
w k ∼ N ( 0 , Q ) ( 2 ) w _k \sim N (0, Q)\qquad(2) wkN(0,Q)(2)
其中 Q Q Q 是过程扰动向量的协方差矩阵。另外,假设测量噪声向量 v k v _k vk 服从正态分布,具有零均值和规定的协方差矩阵,即
v k ∼ N ( 0 , R ) ( 3 ) v _k \sim N (0, R)\qquad(3) vkN(0,R)(3)
其中 R R R 是测量噪声向量的协方差矩阵。状态转移密度是以下正态分布的密度
N ( A x k − 1 + B u k − 1 , Q ) ( 4 ) N \left(A x _{k-1}+B u _{k-1}, Q\right)\qquad(4) N(Axk1+Buk1,Q)(4)
此外,我们还证明了测量密度(测量概率密度函数),表示为 p ( y k ∣ x k ) p\left( y _k \mid x _k\right) p(ykxk),是一个正态分布,其平均值为 C x k C x _k Cxk,协方差矩阵等于测量噪声向量 v k v _k vk 的协方差矩阵。也就是说,测量密度是以下正态分布的密度
N ( C x k , R ) ( 5 ) N \left(C x _k, R\right)\qquad(5) N(Cxk,R)(5)
为了实现粒子滤波器,我们需要从状态转换概率 (4) 中抽取 x k x _k xk 的样本。有两种方法可用于生成这些样本。第一种方法(我们在 Python 实现中使用)是从 (2) 中给出的分布中抽取过程扰动向量的随机样本。

在每个离散时间点 k k k,粒子滤波器计算以下一组粒子
{ ( x k ( i ) , w k ( i ) ) ∣ i = 1 , 2 , 3 , … , N } ( 6 ) \left\{\left( x _k^{(i)}, w_k^{(i)}\right) \mid i=1,2,3, \ldots, N\right\}\qquad(6) {(xk(i),wk(i))i=1,2,3,,N}(6)
索引为 i i i 的粒子由元组 ( x k ( i ) , w k ( i ) ) \left( x _k^{(i)}, w_k^{(i)}\right) (xk(i),wk(i)) 组成,其中 x k ( i ) x _k^{(i)} xk(i) 是状态样本, w k ( i ) w_k^{(i)} wk(i) 是重要性权重。粒子集近似后验密度 p ( x k ∣ y 0 : k , u 0 : k − 1 ) p\left(x_k \mid y _{0: k}, u _{0: k-1}\right) p(xky0:k,u0:k1),如下所示
p ( x k ∣ y 0 : k , u 0 : k − 1 ) ≈ ∑ i = 1 N w k ( i ) δ ( x k − x k ( i ) ) ( 7 ) p\left( x _k \mid y _{0: k}, u _{0: k-1}\right) \approx \sum_{i=1}^N w_k^{(i)} \delta\left( x _k- x _k^{(i)}\right)\qquad(7) p(xky0:k,u0:k1)i=1Nwk(i)δ(xkxk(i))(7)
粒子滤波算法的说明:对于初始粒子集
{ ( x 0 ( i ) , w 0 ( i ) ) ∣ i = 1 , 2 , 3 , … , N } \left\{\left( x _0^{(i)}, w_0^{(i)}\right) \mid i=1,2,3, \ldots, N\right\} {(x0(i),w0(i))i=1,2,3,,N}

Python过滤实现(片段)

import time
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import multivariate_normal

def systematicResampling(weightArray):
    N=len(weightArray)
    cValues=[]
    cValues.append(weightArray[0])

    for i in range(N-1):
        cValues.append(cValues[i]+weightArray[i+1])
    startingPoint=np.random.uniform(low=0.0, high=1/(N))
    resampledIndex=[]
    for j in range(N):
        currentPoint=startingPoint+(1/N)*(j)
        s=0
        while (currentPoint>cValues[s]):
            s=s+1
            
        resampledIndex.append(s)

    return resampledIndex

meanProcess=np.array([0,0])
covarianceProcess=np.array([[0.002, 0],[0, 0.002]])

meanNoise=np.array([0])
covarianceNoise=np.array([[0.001]])

processDistribution=multivariate_normal(mean=meanProcess,cov=covarianceProcess)
noiseDistribution=multivariate_normal(mean=meanNoise,cov=covarianceNoise)

m=5
ks=200
kd=30

Ac=np.array([[0,1],[-ks/m, -kd/m]])
Cc=np.array([[1,0]])
Bc=np.array([[0],[1/m]])

h=0.01

A=np.linalg.inv(np.eye(2)-h*Ac)
B=h*np.matmul(A,Bc)
C=Cc

simTime=1000
x0=np.array([[0.1],[0.01]])

stateDim,tmp11=x0.shape
controlInput=100*np.ones((1,simTime))

stateTrajectory=np.zeros(shape=(stateDim,simTime+1))
output=np.zeros(shape=(1,simTime))

stateTrajectory[:,[0]]=x0

for i in range(simTime):
    stateTrajectory[:,[i+1]]=np.matmul(A,stateTrajectory[:,[i]])+np.matmul(B,controlInput[:,[i]])+processDistribution.rvs(size=1).reshape(stateDim,1)
    output[:,[i]]=np.matmul(C,stateTrajectory[:,[i]])+noiseDistribution.rvs(size=1).reshape(1,1)

x0Guess=x0+np.array([[0.7],[-0.6]])
pointsX, pointsY = np.mgrid[x0Guess[0,0]-0.8:x0Guess[0,0]+0.8:0.1, x0Guess[1,0]-0.5:x0Guess[1,0]+0.5:0.1]
xVec=pointsX.reshape((-1, 1), order="C")
yVec=pointsY.reshape((-1, 1), order="C")

states=np.hstack((xVec,yVec)).transpose()

dim1,numberParticle=states.shape

weights=(1/numberParticle)*np.ones((1,numberParticle))
numberIterations=1000

stateList=[]
stateList.append(states)
weightList=[]
weightList.append(weights)

for i in range(numberIterations):
    controlInputBatch=controlInput[0,i]*np.ones((1,numberParticle))
    newStates=np.matmul(A,states)+np.matmul(B,controlInputBatch)+processDistribution.rvs(size=numberParticle).transpose()
    newWeights=np.zeros(shape=(1,numberParticle))
    for j in range(numberParticle):
        meanDis=np.matmul(C,newStates[:,[j]])
        distributionO=multivariate_normal(mean=meanDis[0],cov=covarianceNoise)
        newWeights[:,j]=distributionO.pdf(output[:,i])*weights[:,[j]]
    weightsStandardized=newWeights/(newWeights.sum())
    tmp1=[val**2 for val in weightsStandardized]
    Neff=1/(np.array(tmp1).sum())
    if Neff<(numberParticle//3):
        resampledStateIndex=np.random.choice(np.arange(numberParticle), numberParticle, p=weightsStandardized[0,:])        
        newStates=newStates[:,resampledStateIndex]
        weightsStandardized=(1/numberParticle)*np.ones((1,numberParticle))

    states=newStates
    weights=weightsStandardized
    stateList.append(states)
    weightList.append(weights)

meanStateSequence=np.zeros(shape=(stateDim,numberIterations))
for i in range(numberIterations):
    meanState=np.zeros(shape=(stateDim,1))
    for j in range(numberParticle):
        meanState=meanState+weightList[i][:,j]*stateList[i][:,j].reshape(2,1)
        
    meanStateSequence[:,[i]]=meanState

👉更新:亚图跨际


原文地址:https://blog.csdn.net/jiyotin/article/details/142762632

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!