自学内容网 自学内容网

遗传算法-2

遗传算法-1请查看上一篇博客

完整案例演示

函数定义代码

import numpy

def cal_pop_fitness(equation_inputs, pop):
    # Calculating the fitness value of each solution in the current population.
    # The fitness function calulates the sum of products between each input and its corresponding weight.
    fitness = numpy.sum(pop*equation_inputs, axis=1)
    return fitness

def select_mating_pool(pop, fitness, num_parents):
    # Selecting the best individuals in the current generation as parents for producing the offspring of the next generation.
    parents = numpy.empty((num_parents, pop.shape[1]))
    for parent_num in range(num_parents):
        max_fitness_idx = numpy.where(fitness == numpy.max(fitness))
        max_fitness_idx = max_fitness_idx[0][0]
        parents[parent_num, :] = pop[max_fitness_idx, :]
        fitness[max_fitness_idx] = -99999999999
    return parents

def crossover(parents, offspring_size):
    offspring = numpy.empty(offspring_size)
    # The point at which crossover takes place between two parents. Usually, it is at the center.
    crossover_point = numpy.uint8(offspring_size[1]/2)

    for k in range(offspring_size[0]):
        # Index of the first parent to mate.
        parent1_idx = k%parents.shape[0]
        # Index of the second parent to mate.
        parent2_idx = (k+1)%parents.shape[0]
        # The new offspring will have its first half of its genes taken from the first parent.
        offspring[k, 0:crossover_point] = parents[parent1_idx, 0:crossover_point]
        # The new offspring will have its second half of its genes taken from the second parent.
        offspring[k, crossover_point:] = parents[parent2_idx, crossover_point:]
    return offspring

def mutation(offspring_crossover, num_mutations=1):
    mutations_counter = numpy.uint8(offspring_crossover.shape[1] / num_mutations)
    # Mutation changes a number of genes as defined by the num_mutations argument. The changes are random.
    for idx in range(offspring_crossover.shape[0]):
        gene_idx = mutations_counter - 1
        for mutation_num in range(num_mutations):
            # The random value to be added to the gene.
            random_value = numpy.random.uniform(-1.0, 1.0, 1)
            offspring_crossover[idx, gene_idx] = offspring_crossover[idx, gene_idx] + random_value
            gene_idx = gene_idx + mutations_counter
    return offspring_crossover

使用遗传算法(Genetic Algorithm, GA)来优化一个线性方程 y=w1​x1​+w2​x2​+w3​x3​+w4​x4​+w5​x5​+w6​x6​ 的权重 w1​ 到 w6​,其中 x1​ 到 x6​ 是给定的固定值。 

import numpy
import ga

"""
The y=target is to maximize this equation ASAP:
    y = w1x1+w2x2+w3x3+w4x4+w5x5+6wx6
    where (x1,x2,x3,x4,x5,x6)=(4,-2,3.5,5,-11,-4.7)
    What are the best values for the 6 weights w1 to w6?
    We are going to use the genetic algorithm for the best possible values after a number of generations.
"""

# Inputs of the equation.
equation_inputs = [4,-2,3.5,5,-11,-4.7]

# Number of the weights we are looking to optimize.
num_weights = len(equation_inputs)

"""
Genetic algorithm parameters:
    Mating pool size
    Population size
"""
sol_per_pop = 8
num_parents_mating = 4

# Defining the population size.
pop_size = (sol_per_pop,num_weights) # The population will have sol_per_pop chromosome where each chromosome has num_weights genes.
#Creating the initial population.
new_population = numpy.random.uniform(low=-4.0, high=4.0, size=pop_size)
print(new_population)

"""
new_population[0, :] = [2.4,  0.7, 8, -2,   5,   1.1]
new_population[1, :] = [-0.4, 2.7, 5, -1,   7,   0.1]
new_population[2, :] = [-1,   2,   2, -3,   2,   0.9]
new_population[3, :] = [4,    7,   12, 6.1, 1.4, -4]
new_population[4, :] = [3.1,  4,   0,  2.4, 4.8,  0]
new_population[5, :] = [-2,   3,   -7, 6,   3,    3]
"""

best_outputs = []
num_generations = 1000
for generation in range(num_generations):
    print("Generation : ", generation)
    # Measuring the fitness of each chromosome in the population.
    fitness = ga.cal_pop_fitness(equation_inputs, new_population)
    print("Fitness")
    print(fitness)

    best_outputs.append(numpy.max(numpy.sum(new_population*equation_inputs, axis=1)))
    # The best result in the current iteration.
    print("Best result : ", numpy.max(numpy.sum(new_population*equation_inputs, axis=1)))
    
    # Selecting the best parents in the population for mating.
    parents = ga.select_mating_pool(new_population, fitness, 
                                      num_parents_mating)
    print("Parents")
    print(parents)

    # Generating next generation using crossover.
    offspring_crossover = ga.crossover(parents,
                                       offspring_size=(pop_size[0]-parents.shape[0], num_weights))
    print("Crossover")
    print(offspring_crossover)

    # Adding some variations to the offspring using mutation.
    offspring_mutation = ga.mutation(offspring_crossover, num_mutations=2)
    print("Mutation")
    print(offspring_mutation)

    # Creating the new population based on the parents and offspring.
    new_population[0:parents.shape[0], :] = parents
    new_population[parents.shape[0]:, :] = offspring_mutation
    
# Getting the best solution after iterating finishing all generations.
#At first, the fitness is calculated for each solution in the final generation.
fitness = ga.cal_pop_fitness(equation_inputs, new_population)
# Then return the index of that solution corresponding to the best fitness.
best_match_idx = numpy.where(fitness == numpy.max(fitness))

print("Best solution : ", new_population[best_match_idx, :])
print("Best solution fitness : ", fitness[best_match_idx])


import matplotlib.pyplot
matplotlib.pyplot.plot(best_outputs)
matplotlib.pyplot.xlabel("Iteration")
matplotlib.pyplot.ylabel("Fitness")
matplotlib.pyplot.show()


原文地址:https://blog.csdn.net/qq_44204759/article/details/140621385

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!