七种查找方式(Java)
一、基本查找
也叫做顺序查找
说明:顺序查找适合于存储结构为数组或者链表。
基本思想:顺序查找也称为线形查找,属于无序查找算法。从数据结构线的一端开始,顺序扫描,依次将遍历到的结点与要查找的值相比较,若相等则表示查找成功;若遍历结束仍没有找到相同的,表示查找失败。
public class A01_BasicSearchDemo1 {
public static void main(String[] args) {
//基本查找/顺序查找
//核心:
//从0索引开始挨个往后查找
//需求:定义一个方法利用基本查找,查询某个元素是否存在
//数据如下:{131, 127, 147, 81, 103, 23, 7, 79}
int[] arr = {131, 127, 147, 81, 103, 23, 7, 79};
int number = 82;
System.out.println(basicSearch(arr, number));
}
//参数:
//一:数组
//二:要查找的元素
//返回值:
//元素是否存在
public static boolean basicSearch(int[] arr, int number){
//利用基本查找来查找number在数组中是否存在
for (int i = 0; i < arr.length; i++) {
if(arr[i] == number){
return true;
}
}
return false;
}
}
二、二分查找
也叫做折半查找
说明:元素必须是有序的,从小到大,或者从大到小都是可以的。
如果是无序的,也可以先进行排序。但是排序之后,会改变原有数据的顺序,查找出来元素位置跟原来的元素可能是不一样的,所以排序之后再查找只能判断当前数据是否在容器当中,返回的索引无实际的意义。
基本思想:也称为是折半查找,属于有序查找算法。用给定值先与中间结点比较。比较完之后有三种情况:
-
相等
说明找到了
-
要查找的数据比中间节点小
说明要查找的数字在中间节点左边
-
要查找的数据比中间节点大
说明要查找的数字在中间节点右边
public class A02_BinarySearchDemo1 { public static void main(String[] args) { //二分查找/折半查找 //核心: //每次排除一半的查找范围 //需求:定义一个方法利用二分查找,查询某个元素在数组中的索引 //数据如下:{7, 23, 79, 81, 103, 127, 131, 147} int[] arr = {7, 23, 79, 81, 103, 127, 131, 147}; System.out.println(binarySearch(arr, 150)); } public static int binarySearch(int[] arr, int number){ //1.定义两个变量记录要查找的范围 int min = 0; int max = arr.length - 1; //2.利用循环不断的去找要查找的数据 while(true){ if(min > max){ return -1; } //3.找到min和max的中间位置 int mid = (min + max) / 2; //4.拿着mid指向的元素跟要查找的元素进行比较 if(arr[mid] > number){ //4.1 number在mid的左边 //min不变,max = mid - 1; max = mid - 1; }else if(arr[mid] < number){ //4.2 number在mid的右边 //max不变,min = mid + 1; min = mid + 1; }else{ //4.3 number跟mid指向的元素一样 //找到了 return mid; } } } }
三、插值查找
在介绍插值查找之前,先考虑一个问题:
为什么二分查找算法一定要是折半,而不是折四分之一或者折更多呢?
其实就是因为方便,简单,但是如果我能在二分查找的基础上,让中间的mid点,尽可能靠近想要查找的元素,那不就能提高查找的效率了吗?
二分查找中查找点计算如下:
mid=(low+high)/2, 即mid=low+1/2*(high-low);
我们可以将查找的点改进为如下:
mid=low+(key-a[low])/(a[high]-a[low])*(high-low),
这样,让mid值的变化更靠近关键字key,这样也就间接地减少了比较次数。
基本思想:基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。当然,差值查找也属于有序查找。
细节:对于表长较大,而关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比折半查找要好的多。反之,数组中如果分布非常不均匀,那么插值查找未必是很合适的选择。
代码跟二分查找类似,只要修改一下mid的计算方式即可。
四、斐波那契查找
在介绍斐波那契查找算法之前,我们先介绍一下很它紧密相连并且大家都熟知的一个概念——黄金分割。
黄金比例又称黄金分割,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1:0.618或1.618:1。
在数学中有一个非常有名的数学规律:斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…….
(从第三个数开始,后边每一个数都是前两个数的和)。
然后我们会发现,随着斐波那契数列的递增,前后两个数的比值会越来越接近0.618,利用这个特性,我们就可以将黄金比例运用到查找技术中。
-
基本思想:也是二分查找的一种提升算法,通过运用黄金比例的概念在数列中选择查找点进行查找,提高查找效率。同样地,斐波那契查找也属于一种有序查找算法。
斐波那契查找也是在二分查找的基础上进行了优化,优化中间点mid的计算方式即可
public class FeiBoSearchDemo { public static int maxSize = 20; public static void main(String[] args) { int[] arr = {1, 8, 10, 89, 1000, 1234}; System.out.println(search(arr, 1234)); } public static int[] getFeiBo() { int[] arr = new int[maxSize]; arr[0] = 1; arr[1] = 1; for (int i = 2; i < maxSize; i++) { arr[i] = arr[i - 1] + arr[i - 2]; } return arr; } public static int search(int[] arr, int key) { int low = 0; int high = arr.length - 1; //表示斐波那契数分割数的下标值 int index = 0; int mid = 0; //调用斐波那契数列 int[] f = getFeiBo(); //获取斐波那契分割数值的下标 while (high > (f[index] - 1)) { index++; } //因为f[k]值可能大于a的长度,因此需要使用Arrays工具类,构造一个新法数组,并指向temp[],不足的部分会使用0补齐 int[] temp = Arrays.copyOf(arr, f[index]); //实际需要使用arr数组的最后一个数来填充不足的部分 for (int i = high + 1; i < temp.length; i++) { temp[i] = arr[high]; } //使用while循环处理,找到key值 while (low <= high) { mid = low + f[index - 1] - 1; if (key < temp[mid]) {//向数组的前面部分进行查找 high = mid - 1; /* 对k--进行理解 1.全部元素=前面的元素+后面的元素 2.f[k]=k[k-1]+f[k-2] 因为前面有k-1个元素没所以可以继续分为f[k-1]=f[k-2]+f[k-3] 即在f[k-1]的前面继续查找k-- 即下次循环,mid=f[k-1-1]-1 */ index--; } else if (key > temp[mid]) {//向数组的后面的部分进行查找 low = mid + 1; index -= 2; } else {//找到了 //需要确定返回的是哪个下标 if (mid <= high) { return mid; } else { return high; } } } return -1; } }
五、分块查找
当数据表中的数据元素很多时,可以采用分块查找。
汲取了顺序查找和折半查找各自的优点,既有动态结构,又适于快速查找
分块查找适用于数据较多,但是数据不会发生变化的情况,如果需要一边添加一边查找,建议使用哈希查找
分块查找的过程:
-
需要把数据分成N多小块,块与块之间不能有数据重复的交集。
-
给每一块创建对象单独存储到数组当中
-
查找数据的时候,先在数组查,当前数据属于哪一块
-
再到这一块中顺序查找
package com.itheima.search; public class A03_BlockSearchDemo { public static void main(String[] args) { /* 分块查找 核心思想: 块内无序,块间有序 实现步骤: 1.创建数组blockArr存放每一个块对象的信息 2.先查找blockArr确定要查找的数据属于哪一块 3.再单独遍历这一块数据即可 */ int[] arr = {16, 5, 9, 12,21, 18, 32, 23, 37, 26, 45, 34, 50, 48, 61, 52, 73, 66}; //创建三个块的对象 Block b1 = new Block(21,0,5); Block b2 = new Block(45,6,11); Block b3 = new Block(73,12,17); //定义数组用来管理三个块的对象(索引表) Block[] blockArr = {b1,b2,b3}; //定义一个变量用来记录要查找的元素 int number = 37; //调用方法,传递索引表,数组,要查找的元素 int index = getIndex(blockArr,arr,number); //打印一下 System.out.println(index); } //利用分块查找的原理,查询number的索引 private static int getIndex(Block[] blockArr, int[] arr, int number) { //1.确定number是在那一块当中 int indexBlock = findIndexBlock(blockArr, number); if(indexBlock == -1){ //表示number不在数组当中 return -1; } //2.获取这一块的起始索引和结束索引 --- 30 // Block b1 = new Block(21,0,5); ---- 0 // Block b2 = new Block(45,6,11); ---- 1 // Block b3 = new Block(73,12,17); ---- 2 int startIndex = blockArr[indexBlock].getStartIndex(); int endIndex = blockArr[indexBlock].getEndIndex(); //3.遍历 for (int i = startIndex; i <= endIndex; i++) { if(arr[i] == number){ return i; } } return -1; } //定义一个方法,用来确定number在哪一块当中 public static int findIndexBlock(Block[] blockArr,int number){ //100 //从0索引开始遍历blockArr,如果number小于max,那么就表示number是在这一块当中的 for (int i = 0; i < blockArr.length; i++) { if(number <= blockArr[i].getMax()){ return i; } } return -1; } } class Block{ private int max;//最大值 private int startIndex;//起始索引 private int endIndex;//结束索引 public Block() { } public Block(int max, int startIndex, int endIndex) { this.max = max; this.startIndex = startIndex; this.endIndex = endIndex; } /** * 获取 * @return max */ public int getMax() { return max; } /** * 设置 * @param max */ public void setMax(int max) { this.max = max; } /** * 获取 * @return startIndex */ public int getStartIndex() { return startIndex; } /** * 设置 * @param startIndex */ public void setStartIndex(int startIndex) { this.startIndex = startIndex; } /** * 获取 * @return endIndex */ public int getEndIndex() { return endIndex; } /** * 设置 * @param endIndex */ public void setEndIndex(int endIndex) { this.endIndex = endIndex; } public String toString() { return "Block{max = " + max + ", startIndex = " + startIndex + ", endIndex = " + endIndex + "}"; } }
扩展:可以在Block中加入min,使分块更灵活
六、哈希查找
哈希查找是分块查找的进阶版,适用于数据一边添加一边查找的情况。
一般是数组 + 链表的结合体或者是数组+链表 + 红黑树的结合体
在课程中,为了让大家方便理解,所以规定:
-
数组的0索引处存储1~100
-
数组的1索引处存储101~200
-
数组的2索引处存储201~300
-
以此类推
但是实际上,我们一般不会采取这种方式,因为这种方式容易导致一块区域添加的元素过多,导致效率偏低。
更多的是先计算出当前数据的哈希值,用哈希值跟数组的长度进行计算,计算出应存入的位置,再挂在数组的后面形成链表,如果挂的元素太多而且数组长度过长,我们也会把链表转化为红黑树,进一步提高效率。
七、树表查询
本知识点涉及到数据结构:树。
建议先看一下后面阿玮讲解的数据结构,再回头理解。
基本思想:二叉查找树是先对待查找的数据进行生成树,确保树的左分支的值小于右分支的值,然后在就行和每个节点的父节点比较大小,查找最适合的范围。 这个算法的查找效率很高,但是如果使用这种查找方法要首先创建树。
二叉查找树(BinarySearch Tree,也叫二叉搜索树,或称二叉排序树Binary Sort Tree),具有下列性质的二叉树:
1)若任意节点左子树上所有的数据,均小于本身;
2)若任意节点右子树上所有的数据,均大于本身;
二叉查找树性质:对二叉查找树进行中序遍历,即可得到有序的数列。
不同形态的二叉查找树如下图所示:
基于二叉查找树进行优化,进而可以得到其他的树表查找算法,如平衡树、红黑树等高效算法。
以上资料仅供个人参考借鉴。
原文地址:https://blog.csdn.net/m0_63839619/article/details/136972734
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!