数据结构小测试:排序算法
目录
1、请简述数据结构八大排序算法的思路。
冒泡排序:将相邻元素之间的比较和交换,使得每一轮比较后,最大的元素能够到达数组的末尾。重复这个过程,直到整个数组有序。
选择排序:在每一轮中,找到数组中最小的元素,并将其与当前轮的第一个元素交换位置。重复这一操作,使得每一轮过后,都有一个元素被放到了正确的位置上。
插入排序:将数组分为已排序部分和未排序部分,每次从未排序部分取出一个元素,插入到已排序部分的正确位置上。
希尔排序:首先确定一个间隔序列,按此间隔将数组元素分组并进行插入排序。随后逐渐缩小间隔并重复排序过程,直到间隔为1。
快速排序:选一个基准元素,通过一趟排序将整体数据分割成两部分,基准元素左边的数据比基准元素小,右边的数据比基准元素大,然后再按此方法对这两部分数据分别进行快速排序,递归进行,直至完成。
归并排序:先将数组分成两半,分别对这两半进行排序,然后将它们合并成一个有序数组。重复递归这一操作,直至数组有序
堆排序:将待排序的序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个序列重新构造成一个堆,这样会得到n个元素中的次大值。重复以上操作。
计数排序:对输入数据中的每个元素进行计数,确定每个元素出现的次数;然后利用计数结果将元素放到输出序列的正确位置上。
2、常用排序算法手写
冒泡排序:
将相邻元素之间的比较和交换,使得每一轮比较后,最大的元素能够到达数组的末尾。重复这个过程,直到整个数组有序。时间复杂度:O(n^2)
代码:
public static void sort(int[] arr) {
for(int j=0;j<arr.length;j++) {
for(int i=0;i<arr.length-1-j;i++) {
if(arr[i]>arr[i+1]) {
int temp=arr[i];
arr[i] =arr[i+1];
arr[i+1]=temp;
}
}
}
}
选择排序:
在每一轮中,找到数组中最小的元素,并将其与当前轮的第一个元素交换位置。重复这一操作,使得每一轮过后,都有一个元素被放到了正确的位置上。 时间复杂度:O(nlogn)
代码:
public static void simpleswap(int[] arr) {
for(int i=0; i<arr.length; i++) { //负责遍历索引
int index =i ;//index负责找最小的索引
for(int j=i+1; j<arr.length; j++) { //负责找剩余元素中的最小值
if(arr[j]<arr[index]) {
index = j;
}
}
//每找到一次就与前面的交换一次
if(i != index){
int temp = arr[index];
arr[index] = arr[i];
arr[i] = temp;
}
}
}
快速排序:
选一个基准元素,通过一趟排序将整体数据分割成两部分,基准元素左边的数据比基准元素小,右边的数据比基准元素大,然后再按此方法对这两部分数据分别进行快速排序,递归进行,直至完成。
时间复杂度:O(nlogn)
代码:
public static void quicksort(int[] arr,int left,int right) {
//递归出口
if(left>=right) {
return;
}
//定义变量保存基准数
int base=arr[left];
//定义j游标指向最右边
int j=right;
//定义i游标指向最左边
int i=left;
while(i!=j) {
//j从后往前找比基准数小的
while(arr[j]>=base&&i<j) {
j--;
}
//i从前往后找比基准数大的
while(arr[i]<=base&&i<j) {
i++;
}
//i、j两数都停下,交换位置
int temp=arr[i];
arr[i]=arr[j];
arr[j]=temp;
}
//i和j相等(跳出循环)
//交换基数和ij相遇位置的数据
arr[left]=arr[i];
arr[i]=base;
//排序基准数的左边
quicksort(arr,left,i-1);
//排序基准数的右边
quicksort(arr,i+1,right);
}
归并排序:
先将数组分成两半,分别对这两半进行排序,然后将它们合并成一个有序数组。重复递归这一操作,直至数组有序。时间复杂度:O(nlogn)
底层逻辑:先拆分,拆到不能再拆分,然后进行合并,合并的时候进行排序
代码:
public class MergeSort {
public static void main(String[] args) {
int[] nums = new int[] { 9, 8, 7, 6, 5, 4, 3, 2, 10 };
int[] newNums = mergeSort(nums, 0, nums.length - 1);
System.out.println(Arrays.toString(newNums));
}
public static int[] mergeSort(int[] nums, int left, int right) {
if (left == right)//已经拆分彻底,拆分递归的终止条件
return new int[] { nums[left] };
//拆分
int mid = left + (right - left) / 2;
int[] leftArr = mergeSort(nums, left, mid); //左有序数组
int[] rightArr = mergeSort(nums, mid + 1, right); //右有序数组
int[] newNum = new int[leftArr.length + rightArr.length]; //新有序数组
//合并,将拆分的数按大小放到新有序数组里面
int m = 0, i = 0, j = 0;
while (i < leftArr.length && j < rightArr.length) {
newNum[m++] = leftArr[i] < rightArr[j] ? leftArr[i++] : rightArr[j++];
}
while (i < leftArr.length)
newNum[m++] = leftArr[i++];
while (j < rightArr.length)
newNum[m++] = rightArr[j++];
return newNum;
}
}
堆排序:
利用完全二叉树构建大顶堆,此时,整个序列的最大值就是堆顶的根节点。
将堆顶元素与堆底元素进行交换,此时堆底元素就为最大值。
然后将剩余n-1个序列重新构造成一个大顶堆。重复以上操作。
时间复杂度:O(nlogn)
大顶堆:父节点的值大于等于其左右孩子的值 等价于 arr[i]>=arr[2i+1] && arr[i]>=arr[2i+2]
流程图示:
构建大顶堆:
堆顶元素与堆底元素交换,堆底元素不再参与构建,剩下的再次重新构建大顶堆、交换
这一次重新构建时,直接让parent指向堆顶元素,再判断即可
java代码:
public class 堆排序 {
public static void main(String[] args) {
// TODO Auto-generated method stub
int[] arr= {5,7,4,2,0,3,1,6};
//1、构建大顶堆
for(int i=arr.length-1;i>=0;i--) {//从下往上,每个节点以此判断为大顶堆;从length-1节点到0节点
adjust(arr,i,arr.length);
}
System.out.println(Arrays.toString(arr));//输出第一次构建的大顶堆
//2、堆顶堆底元素交换,除堆底外其余元素继续构建大顶堆
for(int j=arr.length-1;j>=0;j--) {
int temp=arr[j];
arr[j]=arr[0];
arr[0]=temp;
//System.out.println(Arrays.toString(arr));
//剩余元素继续构建大顶堆
adjust(arr,0,j);//parent游标直接指向堆顶元素即可,最后一个元素不再参与构建
//System.out.println(Arrays.toString(arr));
}
System.out.println(Arrays.toString(arr));
}
public static void adjust(int[] arr,int parent,int length) {
int child = parent*2+1;//定义左孩子
while(child<length) {//如果有孩子节点
int rchild=child+1;//定义右孩子
//这部分单纯为了让child指向最大child
if(rchild<length && arr[child]<arr[rchild]) {//如果有右孩子,且右孩子比较大
child++;//child指向较大的孩子节点(右孩子节点)
}
//如果父节点小于其孩子节点
if(arr[parent]<arr[child]) {
int temp=arr[parent];
arr[parent]=arr[child];
arr[child]=temp;
//父子结点交换后parent指向child
parent=child;
child=2*parent+1;
//再次进行循环比较
}else {//如果该parent没有孩子节点或者父节点大于孩子节点,直接返回,此节点判断完毕
break;
}
}
}
}
3、额外再加一个二分查找吧
时间复杂度:O(logn)
代码:
public class 二分查找 {
public static void main(String[] args) {
// TODO Auto-generated method stub
int[] arr= {3,45,56,57,67,88};
System.out.println(search(arr,11));
}
public static int search(int[] arr,int target) {
int left = 0;
int right = arr.length-1;
while(left<=right) {
int middle = (left+right)/2;
if(target==arr[middle]) {
System.out.println("找到了");
return middle;
}else if(target<arr[middle]){
right=middle-1;
}else {
left=middle+1;
}
}
System.out.println("没有这个数据");
return -1;
}
}
原文地址:https://blog.csdn.net/m0_63432840/article/details/140420270
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!