笔记小结:卷积神经网络之池化层
本文为李沐老师《动手学深度学习》笔记小结,用于个人复习并记录学习历程,适用于初学者
池化层(pooling)又称汇聚层,它具有双重目的:
- 降低卷积层对位置的敏感性
- 降低对空间降采样表示的敏感性
最大池化层
与卷积层类似,汇聚层运算符由一个固定形状的窗口组成,该窗口根据其步幅大小在输入的所有区域上滑动,为固定形状窗口(有时称为汇聚窗口)遍历的每个位置计算一个输出。 池运算是确定性的,我们通常计算汇聚窗口中所有元素的最大值或平均值。这些操作分别称为最大汇聚层(maximum pooling)和平均汇聚层(average pooling)。
在这两种情况下,与互相关运算符一样,汇聚窗口从输入张量的左上角开始,从左往右、从上往下的在输入张量内滑动。在汇聚窗口到达的每个位置,它计算该窗口中输入子张量的最大值或平均值。计算最大值或平均值是取决于使用了最大汇聚层还是平均汇聚层。
import torch
from torch import nn
def pool2d(X, pool_size, mode='max'):
p_h, p_w = pool_size
Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
if mode == 'max':
Y[i, j] = X[i: i + p_h, j: j + p_w].max()
elif mode == 'avg':
Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
return Y
举例:
X = torch.tensor([[0.0, 1.0, 2.0],
[3.0, 4.0, 5.0],
[6.0, 7.0, 8.0]])
pool2d(X, (2, 2))
#输出:
#tensor([[4., 5.],
# [7., 8.]])
pool2d(X, (2, 2), 'avg')
#输出:
#tensor([[2., 3.],
# [5., 6.]])
填充与步幅
与卷积层一样,汇聚层也可以改变输出形状。和以前一样,我们可以通过填充和步幅以获得所需的输出形状。 下面,我们用深度学习框架中内置的二维最大汇聚层,来演示汇聚层中填充和步幅的使用。 我们首先构造了一个输入张量X
,它有四个维度,其中样本数和通道数都是1。
X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))
X
输出:
tensor([[[[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [12., 13., 14., 15.]]]])
默认情况下,深度学习框架中的步幅与汇聚窗口的大小相同。 因此,如果我们使用形状为(3, 3)
的汇聚窗口,那么默认情况下,我们得到的步幅形状为(3, 3)
。
pool2d = nn.MaxPool2d(3) #3表示池化层的大小
pool2d(X)
#输出:
#tensor([[[[10.]]]])
填充与步幅均可以手动设定,池化层的形状也可以手动设定:
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
#输出:
#tensor([[[[ 5., 7.],
# [13., 15.]]]])
pool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))
pool2d(X)
#输出:
#tensor([[[[ 5., 7.],
# [13., 15.]]]])
多通道
在处理多通道输入数据时,池化层在每个输入通道上单独运算,而不是像卷积层一样在通道上对输入进行汇总。 这意味着汇聚层的输出通道数与输入通道数相同。 下面,我们将在通道维度上连结张量X
和X + 1
,以构建具有2个通道的输入。
X = torch.cat((X, X + 1), 1)
X
输出:
tensor([[[[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [12., 13., 14., 15.]], [[ 1., 2., 3., 4.], [ 5., 6., 7., 8.], [ 9., 10., 11., 12.], [13., 14., 15., 16.]]]])
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
输出:
tensor([[[[ 5., 7.], [13., 15.]], [[ 6., 8.], [14., 16.]]]])
小结
- 对于给定输入元素,最大汇聚层会输出该窗口内的最大值,平均汇聚层会输出该窗口内的平均值。
- 汇聚层的主要优点之一是减轻卷积层对位置的过度敏感。
- 我们可以指定汇聚层的填充和步幅。
- 使用最大汇聚层以及大于1的步幅,可减少空间维度(如高度和宽度)。
- 汇聚层的输出通道数与输入通道数相同。
原文地址:https://blog.csdn.net/qq_62827972/article/details/140403126
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!