基于前馈神经网络模型和卷积神经网络的MINIST数据集训练
目录
前馈神经网络FNN模型
'''
@author: lxy
@function: model--mnist
@date : 2024/10/25
'''
# 导入必要的库
import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.nn.init import normal_,constant_
from torch.autograd import Variable
# 设置超参数
input_size = 784 # 输入层大小,因为MNIST数据集的图片是28x28大小的
hidden_size1 = 128
hidden_size2 = 64
num_class = 10 # 类别数,MNIST数据集有10个数字类别
num_epochs = 10 # 训练的轮数
batch_size = 50 # 每批次的样本数量
learning_rate = 0.01 # 学习率
# 准备数据集
# MNIST数据集的加载,包括训练集和测试集
train_dataset = dsets.MNIST(root='./data', train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='./data', train=False,
transform=transforms.ToTensor())
# 将数据集封装成DataLoader,方便批量加载和打乱数据
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
class FNN(nn.Module):
def __init__(self, input_size, hidden_size1,hidden_size2,num_classes):
super(FNN, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size1) # 隐藏层
normal_(self.fc1.weight, mean=0, std=0.01)
constant_(self.fc1.bias, val=1.0)
self.fc2 = nn.Linear(hidden_size1, hidden_size2) # 隐藏层
normal_(self.fc2.weight, mean=0, std=0.01)
constant_(self.fc2.bias, val=1.0)
self.fc3 = nn.Linear(hidden_size2, num_classes) # 输出层
normal_(self.fc3.weight, mean=0, std=0.01)
constant_(self.fc3.bias, val=1.0)
def forward(self, x):
x = torch.relu(self.fc1(x)) # 使用 ReLU 激活函数
x = torch.relu(self.fc2(x))
out = self.fc3(x)
return out
# 实例化模型
model = FNN(input_size, hidden_size1,hidden_size2,num_class)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs): # 遍历所有的epoch
for i, (images, labels) in enumerate(train_loader): # 遍历每个批次的数据
images = Variable(images.view(-1, 28 * 28)) # 将图片展平
labels = Variable(labels)
optimizer.zero_grad() # 梯度清零
outputs = model(images) # 前向传播
loss = criterion(outputs, labels) # 计算损失
loss.backward() # 反向传播
optimizer.step() # 更新权重
if (i + 1) % 100 == 0:
print('Epoch: [%d/%d], Step: [%d/%d], Loss: %.4f'
% (epoch + 1, num_epochs, i + 1, len(train_loader), loss.item()))
print('模型训练完成')
# 保存模型权重
torch.save(model.state_dict(), 'model.pkl')
print('模型保存完成')
# 测试模型
correct = 0
total = 0
for images, labels in test_loader:
images = Variable(images.view(-1, 28 * 28))
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
# 打印测试精度
print(f'模型的精度为:{100 * correct / total:.2f}%')
print('测试完成')
运行结果:
Epoch: [1/10], Step: [100/1200], Loss: 2.3350
Epoch: [1/10], Step: [200/1200], Loss: 2.3100
Epoch: [1/10], Step: [300/1200], Loss: 2.2857
Epoch: [1/10], Step: [400/1200], Loss: 2.2872
Epoch: [1/10], Step: [500/1200], Loss: 2.3032
Epoch: [1/10], Step: [600/1200], Loss: 2.3065
Epoch: [1/10], Step: [700/1200], Loss: 2.2811
Epoch: [1/10], Step: [800/1200], Loss: 2.3087
Epoch: [1/10], Step: [900/1200], Loss: 2.2884
Epoch: [1/10], Step: [1000/1200], Loss: 2.3137
Epoch: [1/10], Step: [1100/1200], Loss: 2.2961
Epoch: [1/10], Step: [1200/1200], Loss: 2.3011
Epoch: [2/10], Step: [100/1200], Loss: 2.2949
Epoch: [2/10], Step: [200/1200], Loss: 2.3026
Epoch: [2/10], Step: [300/1200], Loss: 2.2837
Epoch: [2/10], Step: [400/1200], Loss: 2.2555
Epoch: [2/10], Step: [500/1200], Loss: 2.2819
Epoch: [2/10], Step: [600/1200], Loss: 2.2609
Epoch: [2/10], Step: [700/1200], Loss: 2.2413
Epoch: [2/10], Step: [800/1200], Loss: 2.1767
Epoch: [2/10], Step: [900/1200], Loss: 1.9502
Epoch: [2/10], Step: [1000/1200], Loss: 1.9029
Epoch: [2/10], Step: [1100/1200], Loss: 1.5652
Epoch: [2/10], Step: [1200/1200], Loss: 1.4752
Epoch: [3/10], Step: [100/1200], Loss: 1.3914
Epoch: [3/10], Step: [200/1200], Loss: 1.2248
Epoch: [3/10], Step: [300/1200], Loss: 1.2547
Epoch: [3/10], Step: [400/1200], Loss: 1.0720
Epoch: [3/10], Step: [500/1200], Loss: 0.8522
Epoch: [3/10], Step: [600/1200], Loss: 1.0576
Epoch: [3/10], Step: [700/1200], Loss: 0.8513
Epoch: [3/10], Step: [800/1200], Loss: 0.7558
Epoch: [3/10], Step: [900/1200], Loss: 0.8906
Epoch: [3/10], Step: [1000/1200], Loss: 0.6811
Epoch: [3/10], Step: [1100/1200], Loss: 0.7370
Epoch: [3/10], Step: [1200/1200], Loss: 0.7120
Epoch: [4/10], Step: [100/1200], Loss: 0.7183
Epoch: [4/10], Step: [200/1200], Loss: 0.6526
Epoch: [4/10], Step: [300/1200], Loss: 1.0557
Epoch: [4/10], Step: [400/1200], Loss: 0.9142
Epoch: [4/10], Step: [500/1200], Loss: 0.6779
Epoch: [4/10], Step: [600/1200], Loss: 0.4618
Epoch: [4/10], Step: [700/1200], Loss: 0.9941
Epoch: [4/10], Step: [800/1200], Loss: 0.6586
Epoch: [4/10], Step: [900/1200], Loss: 0.8161
Epoch: [4/10], Step: [1000/1200], Loss: 0.4814
Epoch: [4/10], Step: [1100/1200], Loss: 0.7023
Epoch: [4/10], Step: [1200/1200], Loss: 0.5938
Epoch: [5/10], Step: [100/1200], Loss: 0.5277
Epoch: [5/10], Step: [200/1200], Loss: 0.6421
Epoch: [5/10], Step: [300/1200], Loss: 0.6591
Epoch: [5/10], Step: [400/1200], Loss: 0.7547
Epoch: [5/10], Step: [500/1200], Loss: 0.5321
Epoch: [5/10], Step: [600/1200], Loss: 0.7591
Epoch: [5/10], Step: [700/1200], Loss: 0.8456
Epoch: [5/10], Step: [800/1200], Loss: 0.4955
Epoch: [5/10], Step: [900/1200], Loss: 0.6119
Epoch: [5/10], Step: [1000/1200], Loss: 0.4185
Epoch: [5/10], Step: [1100/1200], Loss: 0.7572
Epoch: [5/10], Step: [1200/1200], Loss: 0.3567
Epoch: [6/10], Step: [100/1200], Loss: 0.4471
Epoch: [6/10], Step: [200/1200], Loss: 0.4590
Epoch: [6/10], Step: [300/1200], Loss: 0.5883
Epoch: [6/10], Step: [400/1200], Loss: 0.7611
Epoch: [6/10], Step: [500/1200], Loss: 0.3657
Epoch: [6/10], Step: [600/1200], Loss: 0.4927
Epoch: [6/10], Step: [700/1200], Loss: 0.3680
Epoch: [6/10], Step: [800/1200], Loss: 0.5498
Epoch: [6/10], Step: [900/1200], Loss: 0.2330
Epoch: [6/10], Step: [1000/1200], Loss: 0.4561
Epoch: [6/10], Step: [1100/1200], Loss: 0.4381
Epoch: [6/10], Step: [1200/1200], Loss: 0.5882
Epoch: [7/10], Step: [100/1200], Loss: 0.2238
Epoch: [7/10], Step: [200/1200], Loss: 0.1837
Epoch: [7/10], Step: [300/1200], Loss: 0.3769
Epoch: [7/10], Step: [400/1200], Loss: 0.2923
Epoch: [7/10], Step: [500/1200], Loss: 0.3122
Epoch: [7/10], Step: [600/1200], Loss: 0.3876
Epoch: [7/10], Step: [700/1200], Loss: 0.4610
Epoch: [7/10], Step: [800/1200], Loss: 0.2549
Epoch: [7/10], Step: [900/1200], Loss: 0.3639
Epoch: [7/10], Step: [1000/1200], Loss: 0.5007
Epoch: [7/10], Step: [1100/1200], Loss: 0.4893
Epoch: [7/10], Step: [1200/1200], Loss: 0.3306
Epoch: [8/10], Step: [100/1200], Loss: 0.3167
Epoch: [8/10], Step: [200/1200], Loss: 0.5069
Epoch: [8/10], Step: [300/1200], Loss: 0.2262
Epoch: [8/10], Step: [400/1200], Loss: 0.3192
Epoch: [8/10], Step: [500/1200], Loss: 0.3022
Epoch: [8/10], Step: [600/1200], Loss: 0.3831
Epoch: [8/10], Step: [700/1200], Loss: 0.3850
Epoch: [8/10], Step: [800/1200], Loss: 0.2427
Epoch: [8/10], Step: [900/1200], Loss: 0.2228
Epoch: [8/10], Step: [1000/1200], Loss: 0.5374
Epoch: [8/10], Step: [1100/1200], Loss: 0.2917
Epoch: [8/10], Step: [1200/1200], Loss: 0.2410
Epoch: [9/10], Step: [100/1200], Loss: 0.2362
Epoch: [9/10], Step: [200/1200], Loss: 0.6535
Epoch: [9/10], Step: [300/1200], Loss: 0.4043
Epoch: [9/10], Step: [400/1200], Loss: 0.1589
Epoch: [9/10], Step: [500/1200], Loss: 0.2606
Epoch: [9/10], Step: [600/1200], Loss: 0.3407
Epoch: [9/10], Step: [700/1200], Loss: 0.4839
Epoch: [9/10], Step: [800/1200], Loss: 0.3456
Epoch: [9/10], Step: [900/1200], Loss: 0.2724
Epoch: [9/10], Step: [1000/1200], Loss: 0.3831
Epoch: [9/10], Step: [1100/1200], Loss: 0.2052
Epoch: [9/10], Step: [1200/1200], Loss: 0.4371
Epoch: [10/10], Step: [100/1200], Loss: 0.3577
Epoch: [10/10], Step: [200/1200], Loss: 0.5289
Epoch: [10/10], Step: [300/1200], Loss: 0.3724
Epoch: [10/10], Step: [400/1200], Loss: 0.6010
Epoch: [10/10], Step: [500/1200], Loss: 0.4006
Epoch: [10/10], Step: [600/1200], Loss: 0.2830
Epoch: [10/10], Step: [700/1200], Loss: 0.4382
Epoch: [10/10], Step: [800/1200], Loss: 0.2223
Epoch: [10/10], Step: [900/1200], Loss: 0.4305
Epoch: [10/10], Step: [1000/1200], Loss: 0.3229
Epoch: [10/10], Step: [1100/1200], Loss: 0.2160
Epoch: [10/10], Step: [1200/1200], Loss: 0.2330
模型训练完成
模型保存完成
模型的精度为:91.00%
测试完成
Process finished with exit code 0
数据集处理部分:
1、数据存储路径(root='./data')。如果本地没有数据集文件,download=True 将从网上下载 MNIST 数据集,并保存到指定路径。
2、
- train=True 和 train=False 参数分别加载训练集和测试集。
- 这将 MNIST 数据集自动划分成两个独立的数据集:一个用于模型训练(训练集),一个用于模型评估(测试集)
3、transform=transforms.ToTensor() 将图像数据从 PIL 图像或 NumPy 数组格式转换为 PyTorch 张量,还会将图像的像素值从 [0, 255] 归一化为 [0, 1] 的范围
模型训练部分:
梯度清零optimizer.zero_grad()-->前向传播outputs = model(images) --->计算损失loss = criterion(outputs, labels) --->反向传播误差loss.backward()---->更新权重optimizer.step()
通过 enumerate() 可以同时获取批次的索引 i 和数据 images, labels
_, predicted = torch.max(outputs.data, 1)中需要注意:
1、max括号内的第二个参数1是指定了要沿着哪个维度寻找最大值。在这里,表示沿着每个样本的类别输出维度,最后函数返回两个值:预测类别输出的概率最大值和对应的索引。
2、_是一个惯用的占位符,用于忽略函数返回的第一个值(即最大值本身),只保留了预测的类别索引。
卷积神经网络CNN模型
'''
@author: lxy
@function: minist recognition based in CNN model
@date : 2024/10/29
'''
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
class CNN_minist(nn.Module):
def __init__(self):
super(CNN_minist, self).__init__()
# 第一个卷积模块
self.conv1 = nn.Sequential(
# 卷积层
nn.Conv2d(
in_channels=1, # 输入通道数(灰度图像为1)
out_channels=16, # 输出通道数(卷积核数量)
kernel_size=5, # 卷积核的大小
stride=1, # 卷积步长
padding=2 # 填充,使得输出与输入的宽高相同
),
nn.ReLU(), # 激活函数,增加非线性
nn.MaxPool2d(kernel_size=2) # 最大池化层,减小特征图尺寸
)
# 第二个卷积模块
self.conv2 = nn.Sequential(
nn.Conv2d(16, 32, 5, 1, 2), # 输入通道数为16,输出通道数为32
nn.ReLU(), # 激活函数
nn.MaxPool2d(2) # 最大池化层
)
'''
原始图像像素:28*28*1
经过第一个卷积层: 28*28*16(填充Padding为2)
经过第一个池化层:14*14*16
经过第二个卷积层:14*14*32
经过第二个池化层:7*7*32
'''
# 全连接层,输入为7*7*32,输出为10(分类数)
self.out = nn.Linear(7 * 7 * 32, 10)
def forward(self, x: torch.Tensor):
# 前向传播过程
x = self.conv1(x) # 经过第一个卷积模块
x = self.conv2(x) # 经过第二个卷积模块
x = x.view(x.size(0), -1) # 将特征图展平为一维
output = self.out(x) # 通过全连接层得到输出
return output
def start():
input_size = 28 # 输入图像的尺寸为28x28
num_classes = 10 # 标签类别数量(数字0-9)
num_epochs = 3 # 训练的总轮数
batch_size = 64 # 每个批次的样本数量
# 下载和加载训练集
train_dataset = datasets.MNIST(root='./data',
train=True, # 使用训练集
transform=transforms.ToTensor(), # 转换为Tensor格式
download=True) # 下载数据集
# 下载和加载测试集
test_dataset = datasets.MNIST(root='./data',
train=False, # 使用测试集
transform=transforms.ToTensor(), # 转换为Tensor格式
download=True) # 下载数据集
# 构建训练和测试的批量数据加载器
train_loader = DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True) # 打乱训练数据
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size,
shuffle=False) # 测试数据不打乱
myModel = CNN_minist() # 实例化模型
criterion = nn.CrossEntropyLoss() # 选择交叉熵损失作为损失函数
optimizer = optim.Adam(myModel.parameters(), lr=0.001) # 选择Adam优化器
# 开始训练
for epoch in range(num_epochs):
for idx, data in enumerate(train_loader):
inputs, labels = data # 获取输入数据和标签
myModel.train() # 设置模型为训练模式
optimizer.zero_grad() # 梯度归零,防止累加
outputs = myModel(inputs) # 前向传播,得到模型输出
loss = criterion(outputs, labels) # 计算损失
loss.backward() # 反向传播
optimizer.step() # 更新模型参数
# 每100步输出一次损失
if (idx + 1) % 100 == 0:
print('Epoch: [%d/%d], Step: [%d/%d], Loss: %.4f'
% (epoch + 1, num_epochs, idx + 1, len(train_loader), loss.item()))
print('模型训练完成')
# 测试模型
correct = 0 # 正确预测的数量
total = 0 # 总预测数量
with torch.no_grad(): # 关闭梯度计算
for inputs, labels in test_loader:
outputs = myModel(inputs) # 前向传播得到输出
_, predicted = torch.max(outputs.data, 1) # 预测结果
total += labels.size(0) # 更新总样本数
correct += (predicted == labels).sum().item() # 统计正确预测的数量
# 打印模型在测试集上的精度
print(f'模型的精度为:{100 * correct / total:.2f}%')
print('测试完成')
# 启动训练和测试过程
start()
Epoch: [1/3], Step: [100/938], Loss: 0.1791
Epoch: [1/3], Step: [200/938], Loss: 0.1613
Epoch: [1/3], Step: [300/938], Loss: 0.1663
Epoch: [1/3], Step: [400/938], Loss: 0.0369
Epoch: [1/3], Step: [500/938], Loss: 0.1555
Epoch: [1/3], Step: [600/938], Loss: 0.2144
Epoch: [1/3], Step: [700/938], Loss: 0.1035
Epoch: [1/3], Step: [800/938], Loss: 0.0371
Epoch: [1/3], Step: [900/938], Loss: 0.0677
Epoch: [2/3], Step: [100/938], Loss: 0.0502
Epoch: [2/3], Step: [200/938], Loss: 0.1408
Epoch: [2/3], Step: [300/938], Loss: 0.0790
Epoch: [2/3], Step: [400/938], Loss: 0.1037
Epoch: [2/3], Step: [500/938], Loss: 0.0250
Epoch: [2/3], Step: [600/938], Loss: 0.0199
Epoch: [2/3], Step: [700/938], Loss: 0.0180
Epoch: [2/3], Step: [800/938], Loss: 0.0766
Epoch: [2/3], Step: [900/938], Loss: 0.0188
Epoch: [3/3], Step: [100/938], Loss: 0.0366
Epoch: [3/3], Step: [200/938], Loss: 0.0248
Epoch: [3/3], Step: [300/938], Loss: 0.0155
Epoch: [3/3], Step: [400/938], Loss: 0.0330
Epoch: [3/3], Step: [500/938], Loss: 0.0067
Epoch: [3/3], Step: [600/938], Loss: 0.0412
Epoch: [3/3], Step: [700/938], Loss: 0.0165
Epoch: [3/3], Step: [800/938], Loss: 0.0459
Epoch: [3/3], Step: [900/938], Loss: 0.1818
模型训练完成
模型的精度为:98.97%
测试完成
模型构建部分
在 PyTorch 中,Sequential 是一个方便的容器,用于将多个层(layer)按顺序组合在一起,形成一个简单的神经网络模型。使用 Sequential 可以让我们以更简洁的方式定义模型结构,而不需要显式地编写 forward 方法。
EG:
import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms from torchvision import datasets # 定义一个简单的卷积神经网络 class SimpleCNN(nn.Module): def __init__(self): super(SimpleCNN, self).__init__() self.model = nn.Sequential( nn.Conv2d(1, 16, kernel_size=3, padding=1), # 输入1个通道,输出16个通道 nn.ReLU(), nn.MaxPool2d(kernel_size=2), # 最大池化 nn.Conv2d(16, 32, kernel_size=3, padding=1), # 输入16个通道,输出32个通道 nn.ReLU(), nn.MaxPool2d(kernel_size=2), nn.Flatten(), # 展平 nn.Linear(32 * 7 * 7, 10) # 输入特征为32*7*7,输出为10个类别 ) def forward(self, x): return self.model(x) # 实例化模型 model = SimpleCNN() # 打印模型结构 print(model)
Sequential的使用和搭建实战可见输出与sequential内容一致
SimpleCNN( (model): Sequential( (0): Conv2d(1, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): ReLU() (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (3): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): ReLU() (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (6): Flatten(start_dim=1, end_dim=-1) (7): Linear(in_features=1568, out_features=10, bias=True) ) ) Process finished with exit code 0
原文地址:https://blog.csdn.net/qq_73704268/article/details/143342531
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!