自学内容网 自学内容网

【C++】二叉搜索树的底层以及实现

在这里插入图片描述
个人主页
在这里插入图片描述

⭐一、二叉搜索树的概念

二叉搜索树(Binary Search Tree,简称BST),又称为二叉查找树或二叉排序树,是一种特殊的二叉树结构。其具有以下几个性质:
左子树: 若它的左子树不为空,则左子树上所有结点的值都小于等于根结点的值。
右子树: 若它的右子树不为空,则右子树上所有结点的值都大于等于根结点的值。
递归: 它的左右子树也分别为二叉搜索树。

注: 二叉搜索树可以支持插入相等的值,也可以不支持插入相等的值,具体看使用的场景来定义。
在这里插入图片描述

🚀二、二叉搜索树性能分析

最优情况下(即树是平衡的),二叉搜索树为完全二叉树(或者接近完全二叉树),其高度为: O(log2 N)
最差情况下(即树退化成为一个链表),二叉搜索树退化为单支树(或者类似单支),其高度为: O( N / 2)

综合而言二叉搜索树增删查改时间复杂度为: O(N)
但这样的效率显然是不满足我们需求的,我们后面学到的AVL树和红黑树,才能适用于我们内存中存储和搜索数据。

注:虽然二分查找也能实现O(logN) 级别的查找效率,但它有两大缺陷
1.需要存储在支持下标随机访问的结构中,并且有序
2.插入和删除数据效率很,因为存储在下标随机访问的结构中,插入和删除数据一般需要挪动数据

这也就体现出了平衡二叉搜索树的价值。
在这里插入图片描述

🏝️三、二叉搜索树的操作

1. 插入

插入节点操作的具体步骤如下:
1.树为空,则直接新增结点,赋值给root指针
2.树不空,按二叉搜索树性质,插入的值比当前结点大时往右走,插入值比当前结点小时往左左,直到找到空位置时,插入新结点。
3.如果支持插入相等的值,插入值跟当前结点相等的值可以往右走,也可以往左走,直到找到空位置,插人新结点。(要注意的是要保持逻辑一致性,插入相等的值不要一会往右走,一会往左走
在这里插入图片描述

下面是插入节点操作的代码实现:

template<class K>
class BSTree
{
typedef BSTNode<K> Node;
public:
bool Insert(const K& key)
{
if (_root == nullptr)
{
_root = new Node(key);
return true;
}
Node* cur = _root;
Node* parent = nullptr;
while (cur)
{
if (cur->_key < key)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_key > key)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(key);
if (parent->_key < key)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
return true;
}

2. 查找

查找节点操作的具体步骤如下:
1.从根开始进行比较,查找x,x比根的值大则往右边进行查找,x比根的值小则往左边进行查找。
2.最多查找高度次,如果走到空时还没找到,则说明这个值不存在。
3.如果不支持插入相等的值,则找到x即可返回
4.如果支持插入相等的值,意味着有多个x存在,一般要求查找中序的第⼀个x。如下图,查找3,要找到1的右孩子的那个3进行返回
在这里插入图片描述

查找节点操作具体代码如下:

bool Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (cur->_key < key)
{
cur = cur->_right;
}
else if (cur->_key > key)
{
cur = cur->_left;
}
else
{
return true;
}
}
return false;
}

3. 删除

删除节点的操作就是在树中移除一个指定的节点。但删除操作相对复杂一点,因为我们要考虑删除过后如何保持树的有序性。

删除节点操作具有以下四种情况:
1.要删除结点N左右孩子均为空
2.要删除的结点N左孩子位空,右孩子结点不为空
3.要删除的结点N右孩子位空,左孩子结点不为空
4.要删除的结点N左右孩子结点均不为空

那么如何解决它们所对应的情况呢?其对应的方案:
1.把N结点的父亲对应的孩子指针指向空,直接删除N结点
2.把N结点的父亲对应的孩子指针指向N的右孩子,直接删除N结点
3. 把N结点的父亲对应的孩子指针指向N的左孩子,直接删除N结点
4. 因为我们无法直接删除N结点,所以只能用替换法进行删除。找N左子树的值最大结点R(最右结点)或者N右子树的值最小结点R(最左结点)来替代N,因为这两个结点中任意⼀个放到N的位置,都满足二叉搜索树的规则。
(注:替代N的意思就是将N和R的两个结点的值交换,转变成删除R的结点)

删除节点操作具体代码如下:

bool erase(const K& key)
{
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_key < key)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_key > key)
{
parent = cur;
cur = cur->_left;
}
else
{
//左为空
if (cur->_left == nullptr)
{
if (cur == _root)
{
_root = cur->_right;
}
else
{
if (parent->_left == cur)
{
parent->_left = cur->_right;
}
else
{
parent->_right = cur->_right;
}
}
delete cur;
}
else if (cur->_right == nullptr)
{
//右为空
if (cur == _root)
{
_root = cur->_left;
}
else
{
if (parent->_right == cur)
{
parent->_right = cur->_left;
}
else
{
parent->_left = cur->_left;
}
}
delete cur;
}
else
{
//左右都不为空
//右子树最左节点
Node* replaceparent = cur;
Node* replace = cur->_right;
while (replace->_left)
{
replaceparent = replace;
replace = replace->_left;
}
cur->_key = replace->_key;
if (replaceparent->_left == replace)
{
replaceparent->_left = replace->_right;
}
else
{
replaceparent->_right = replace->_right;
}
delete replace;
}
return true;
}
}
return false;
}

4. 遍历节点

遍历节点是按照一定的顺序去访问树中的所有节点,常用的遍历方式有:前序遍历、中序遍历和后序遍历。在这里我们采用中序遍历的方法,因为它可以按小到大的顺序输出树中所有的值。

void _Inorder(Node* root)
{
if (root == nullptr)
{
return;
}
_Inorder(root->_left);
cout << root->_key << " ";
_Inorder(root->_right);
}

🎄四、二叉搜索树的实现(K模型)

下面是二叉树实现的源代码:

template<class K>
struct BSTNode
{
K _key;
BSTNode<K>* _left;
BSTNode<K>* _right;

BSTNode(const K& key)
:_key(key)
, _left(nullptr)
, _right(nullptr)
{}
};

template<class K>
class BSTree
{
typedef BSTNode<K> Node;
public:
bool Insert(const K& key)
{
if (_root == nullptr)
{
_root = new Node(key);
return true;
}
Node* cur = _root;
Node* parent = nullptr;
while (cur)
{
if (cur->_key < key)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_key > key)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(key);
if (parent->_key < key)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
return true;
}

bool Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (cur->_key < key)
{
cur = cur->_right;
}
else if (cur->_key > key)
{
cur = cur->_left;
}
else
{
return true;
}
}
return false;
}

bool erase(const K& key)
{
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_key < key)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_key > key)
{
parent = cur;
cur = cur->_left;
}
else
{
//左为空
if (cur->_left == nullptr)
{
if (cur == _root)
{
_root = cur->_right;
}
else
{
if (parent->_left == cur)
{
parent->_left = cur->_right;
}
else
{
parent->_right = cur->_right;
}
}
delete cur;
}
else if (cur->_right == nullptr)
{
//右为空
if (cur == _root)
{
_root = cur->_left;
}
else
{
if (parent->_right == cur)
{
parent->_right = cur->_left;
}
else
{
parent->_left = cur->_left;
}
}
delete cur;
}
else
{
//左右都不为空
//右子树最左节点
Node* replaceparent = cur;
Node* replace = cur->_right;
while (replace->_left)
{
replaceparent = replace;
replace = replace->_left;
}
cur->_key = replace->_key;
if (replaceparent->_left == replace)
{
replaceparent->_left = replace->_right;
}
else
{
replaceparent->_right = replace->_right;
}
delete replace;
}
return true;
}
}
return false;
}

void Inorder()
{
_Inorder(_root);
cout << endl;
}
private:
void _Inorder(Node* root)
{
if (root == nullptr)
{
return;
}
_Inorder(root->_left);
cout << root->_key << " ";
_Inorder(root->_right);
}
private:
Node* _root = nullptr;
};

🎉五、二叉搜索树的应用

1. K模型

在K模型中,搜索二叉树仅存储关键码(key),不存储与关键码相关联的值(Value),关键码即为需要搜索或存储的值。
K模型代码可以参考搜索二叉树的实现。

特点:存储简单(每个节点只存储了一个键值,减少了空间);查找效率高。

2. KV模型

二叉搜索树的KV模型是一种特殊的数据结构。在KV模型中,每个节点不仅存储一个键(Key),还存储一个与该键相关联的值(Value)。这种模型在处理需要快速通过键来检索值的场景时非常有用,如简单的中英互译、统计一篇文章中单词出现的次数等。

KV模型的搜索场景实现的二叉树搜索树支持修改,但是不支持修改key,因为修改key破坏搜索树结构了,可以修改value。

下面是KV模型的二叉搜索树的代码实现:

template<class K,class V>
struct BSTNode
{
K _key;
V _value;
BSTNode<K,V>* _left;
BSTNode<K,V>* _right;

BSTNode(const K& key,const V& value)
:_key(key)
,_value(value)
, _left(nullptr)
, _right(nullptr)
{}
};

template<class K,class V>
class BSTree
{
using Node = BSTNode<K,V>;
public:
bool Insert(const K& key,const V& value)
{
if (_root == nullptr)
{
_root = new Node(key,value);
return true;
}
Node* cur = _root;
Node* parent = nullptr;
while (cur)
{
if (cur->_key < key)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_key > key)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(key,value);
if (parent->_key < key)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
return true;
}

Node* Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (cur->_key < key)
{
cur = cur->_right;
}
else if (cur->_key > key)
{
cur = cur->_left;
}
else
{
return cur;
}
}
return nullptr;
}

bool erase(const K& key)
{
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_key < key)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_key > key)
{
parent = cur;
cur = cur->_left;
}
else
{
//左为空
if (cur->_left == nullptr)
{
if (cur == _root)
{
_root = cur->_right;
}
else
{
if (parent->_left == cur)
{
parent->_left = cur->_right;
}
else
{
parent->_right = cur->_right;
}
}
delete cur;
}
else if (cur->_right == nullptr)
{
//右为空
if (cur == _root)
{
_root = cur->_left;
}
else
{
if (parent->_left == cur)
{
parent->_left = cur->_left;
}
else
{
parent->_right = cur->_left;
}
}
delete cur;
}
else
{
//左右都不为空
//右子树最左节点
Node* replaceparent = cur;
Node* replace = cur->_right;
while (replace->_left)
{
replaceparent = replace;
replace = replace->_left;
}
cur->_key = replace->_key;
if (replaceparent->_left == replace)
{
replaceparent->_left = replace->_right;
}
else
{
replaceparent->_right = replace->_right;
}
delete replace;
}
return true;
}
}
return false;
}

void Inorder()
{
_Inorder(_root);
cout << endl;
}
private:
void _Inorder(Node* root)
{
if (root == nullptr)
{
return;
}
_Inorder(root->_left);
cout << root->_key << ":" << root->_value << endl;
_Inorder(root->_right);
}
private:
Node* _root = nullptr;
};

原文地址:https://blog.csdn.net/2301_81044829/article/details/142372104

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!