hbase基础(二)
HBase第二天
名称空间
- namespace:名称空间
- 默认hbase有两个名称空间,default、hbase
- default名称空间是默认创建表的位置,hbase是专门存放系统表的名称空间(namespace、meta)
- 管理命名空间指令
- create_namespace 命名空间名称
- drop_namespace 删除
- list_namespace
- describe_namespace
- 在命名空间中创建表
- create “命名空间:表名”
表的设计
- 列蔟:推荐1-2个,能使用1个就不是使用2个
- 版本的设计:如果我们的项目不需要保存历史的版本,直接按照默认配置VERSIONS=1就OK。如果项目中需要保存历史的变更信息,就可以将VERSIONS设置为>1。但是设置为大于1也就意味着要占用更多的空间
- 数据的压缩:在创建表的时候,可以针对列蔟指定数据压缩方式(GZ、SNAPPY、LZO)。GZ方式是压缩比最高的,13%左右的空间,但是它的压缩和解压缩速度慢一些
避免热点的关键操作
-
预分区
- 在创建表的时候,配置一些策略,让一个table有多个region,分布在不同的HRegionServer中
- HBase会自动进行split,如果一个region过大,HBase会自动split成两个,就是根据rowkey来横向切分
-
rowkey设计
-
反转:举例:手机号码、时间戳,可以将手机号码反转
-
加盐:在rowkey前面加随机数,加了随机数之后,就会导致数据查询不出来,因为HBase默认是没有二级索引的
-
hash:根据rowkey中的某个部分取hash,因为hash每次计算都一样的值。所以,我们可以用hash操作获取数据
-
这几种策略,因为要将数据均匀分布在集群中的每个RegionServer,所以其核心就是把rowkey打散后放入到集群节点中,所以数据不再是有序的存储,会导致scan的效率下降
-
预分区
-
预分区有两种策略
-
startKey、endKey来预分区 [10, 40, 50]
-
直接指定数量,startKey、endKey由hbase自动生成,还需要指定key的算法
-
-
HBase的数据都是存放在HDFS中
- /hbase/data/命名空间/表/列蔟/StoreFiles
陌陌消息项目开发
项目初始化
IDEA如果依赖报错,
- 选择源码文件,执行idea中的rebuild
- 执行maven的compile
- 关掉idea,再打开一次
随机生成一条消息
- 通过ExcelReader工具类从Excel文件中读取数据,放入到一个Map结构中
- key:字段名
- value:List,字段对应的数据列表
- 创建getOneMessage方法,这个方法专门用来根据Excel读取到的数据,随机生成一个Msg实体对象
- 调用ExcelReader.randomColumn方法来随机获取一个列的数据
- 注意:消息使用的是系统当前时间,时间的格式是:年-月-日 小时:分钟:秒
public class MoMoMsgGen {
public static void main(String[] args) {
// 读取Excel文件中的数据
Map<String, List<String>> resultMap =
ExcelReader.readXlsx("D:\\课程研发\\51.V8.0_NoSQL_MQ\\2.HBase\\3.代码\\momo_chat_app\\data\\测试数据集.xlsx", "陌陌数据");
System.out.println(getOneMessage(resultMap));
}
/**
* 基于从Excel表格中读取的数据随机生成一个Msg对象
* @param resultMap Excel读取的数据(Map结构)
* @return 一个Msg对象
*/
public static Msg getOneMessage(Map<String, List<String>> resultMap) {
// 1.构建Msg实体类对象
Msg msg = new Msg();
// 将当前系统的时间设置为消息的时间,以年月日 时分秒的形式存储
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
// 获取系统时间
Date now = new Date();
msg.setMsg_time(simpleDateFormat.format(now));
// 2.调用ExcelReader中的randomColumn随机生成一个列的数据
// 初始化sender_nickyname字段,调用randomColumn随机取nick_name设置数据
msg.setSender_nickyname(ExcelReader.randomColumn(resultMap, "sender_nickyname"));
msg.setSender_account(ExcelReader.randomColumn(resultMap, "sender_account"));
msg.setSender_sex(ExcelReader.randomColumn(resultMap, "sender_sex"));
msg.setSender_ip(ExcelReader.randomColumn(resultMap, "sender_ip"));
msg.setSender_os(ExcelReader.randomColumn(resultMap, "sender_os"));
msg.setSender_phone_type(ExcelReader.randomColumn(resultMap, "sender_phone_type"));
msg.setSender_network(ExcelReader.randomColumn(resultMap, "sender_network"));
msg.setSender_gps(ExcelReader.randomColumn(resultMap, "sender_gps"));
msg.setReceiver_nickyname(ExcelReader.randomColumn(resultMap, "receiver_nickyname"));
msg.setReceiver_ip(ExcelReader.randomColumn(resultMap, "receiver_ip"));
msg.setReceiver_account(ExcelReader.randomColumn(resultMap, "receiver_account"));
msg.setReceiver_os(ExcelReader.randomColumn(resultMap, "receiver_os"));
msg.setReceiver_phone_type(ExcelReader.randomColumn(resultMap, "receiver_phone_type"));
msg.setReceiver_network(ExcelReader.randomColumn(resultMap, "receiver_network"));
msg.setReceiver_gps(ExcelReader.randomColumn(resultMap, "receiver_gps"));
msg.setReceiver_sex(ExcelReader.randomColumn(resultMap, "receiver_sex"));
msg.setMsg_type(ExcelReader.randomColumn(resultMap, "msg_type"));
msg.setDistance(ExcelReader.randomColumn(resultMap, "distance"));
msg.setMessage(ExcelReader.randomColumn(resultMap, "message"));
// 3.注意时间使用系统当前时间
return msg;
}
}
生成rowkey
- ROWKEY = MD5Hash_发件人账号_收件人账号_消息时间戳
- MD5Hash.getMD5AsHex生成MD5值,为了缩短rowkey,取前8位
// 根据Msg实体对象生成rowkey
public static byte[] getRowkey(Msg msg) throws ParseException {
//
// ROWKEY = MD5Hash_发件人账号_收件人账号_消息时间戳
//
// 使用StringBuilder将发件人账号、收件人账号、消息时间戳使用下划线(_)拼接起来
StringBuilder builder = new StringBuilder();
builder.append(msg.getSender_account());
builder.append("_");
builder.append(msg.getReceiver_account());
builder.append("_");
// 获取消息的时间戳
String msgDateTime = msg.getMsg_time();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
Date msgDate = simpleDateFormat.parse(msgDateTime);
long timestamp = msgDate.getTime();
builder.append(timestamp);
// 使用Bytes.toBytes将拼接出来的字符串转换为byte[]数组
// 使用MD5Hash.getMD5AsHex生成MD5值,并取其前8位
String md5AsHex = MD5Hash.getMD5AsHex(builder.toString().getBytes());
String md5Hex8bit = md5AsHex.substring(0, 8);
// 再将MD5值和之前拼接好的发件人账号、收件人账号、消息时间戳,再使用下划线拼接,转换为Bytes数组
String rowkeyString = md5Hex8bit + "_" + builder.toString();
System.out.println(rowkeyString);
return Bytes.toBytes(rowkeyString);
}
将随机生成的数据推入到HBase
public static void main(String[] args) throws ParseException, IOException {
// 读取Excel文件中的数据
Map<String, List<String>> resultMap =
ExcelReader.readXlsx("D:\\课程研发\\51.V8.0_NoSQL_MQ\\2.HBase\\3.代码\\momo_chat_app\\data\\测试数据集.xlsx", "陌陌数据");
// 生成数据到HBase中
// 1. 获取Hbase连接
Configuration config = HBaseConfiguration.create();
Connection connection = ConnectionFactory.createConnection(config);
// 2. 获取HBase表MOMO_CHAT:MSG
Table table = connection.getTable(TableName.valueOf("MOMO_CHAT:MSG"));
int i = 0;
int MAX = 100000;
while (i < MAX) {
Msg msg = getOneMessage(resultMap);
// 3. 初始化操作Hbase所需的变量(列蔟、列名)
byte[] rowkey = getRowkey(msg);
String cf = "C1";
String colMsg_time = "msg_time";
String colSender_nickyname = "sender_nickyname";
String colSender_account = "sender_account";
String colSender_sex = "sender_sex";
String colSender_ip = "sender_ip";
String colSender_os = "sender_os";
String colSender_phone_type = "sender_phone_type";
String colSender_network = "sender_network";
String colSender_gps = "sender_gps";
String colReceiver_nickyname = "receiver_nickyname";
String colReceiver_ip = "receiver_ip";
String colReceiver_account = "receiver_account";
String colReceiver_os = "receiver_os";
String colReceiver_phone_type = "receiver_phone_type";
String colReceiver_network = "receiver_network";
String colReceiver_gps = "receiver_gps";
String colReceiver_sex = "receiver_sex";
String colMsg_type = "msg_type";
String colDistance = "distance";
String colMessage = "message";
// 4. 构建put请求
Put put = new Put(rowkey);
// 5. 挨个添加陌陌消息的所有列
put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(colMsg_time), Bytes.toBytes(msg.getMsg_time()));
put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(colSender_nickyname), Bytes.toBytes(msg.getSender_nickyname()));
put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(colSender_account), Bytes.toBytes(msg.getSender_account()));
put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(colSender_sex), Bytes.toBytes(msg.getSender_sex()));
put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(colSender_ip), Bytes.toBytes(msg.getSender_ip()));
put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(colSender_os), Bytes.toBytes(msg.getSender_os()));
put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(colSender_phone_type), Bytes.toBytes(msg.getSender_phone_type()));
put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(colSender_network), Bytes.toBytes(msg.getSender_network()));
put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(colSender_gps), Bytes.toBytes(msg.getSender_gps()));
put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(colReceiver_nickyname), Bytes.toBytes(msg.getReceiver_nickyname()));
put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(colReceiver_ip), Bytes.toBytes(msg.getReceiver_ip()));
put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(colReceiver_account), Bytes.toBytes(msg.getReceiver_account()));
put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(colReceiver_os), Bytes.toBytes(msg.getReceiver_os()));
put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(colReceiver_phone_type), Bytes.toBytes(msg.getReceiver_phone_type()));
put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(colReceiver_network), Bytes.toBytes(msg.getReceiver_network()));
put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(colReceiver_gps), Bytes.toBytes(msg.getReceiver_gps()));
put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(colReceiver_sex), Bytes.toBytes(msg.getReceiver_sex()));
put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(colMsg_type), Bytes.toBytes(msg.getMsg_type()));
put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(colDistance), Bytes.toBytes(msg.getDistance()));
put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(colMessage), Bytes.toBytes(msg.getMessage()));
// 6. 发起put请求
table.put(put);
// 显示进度
++i;
System.out.println(i + " / " + MAX);
}
table.close();
connection.close();
}
实现getMessage数据服务接口
使用scan + filter实现的
- 构建scan对象
- 构建4个filter(开始日期查询、结束日期查询、发件人、收件人)
- 构建一个Msg对象列表
/**
*
* @param date 日期 2020-09-10
* @param sender 发件人
* @param receiver 收件人
* @return
* @throws Exception
*/
@Override
public List<Msg> getMessage(String date, String sender, String receiver) throws Exception {
// 1.构建scan对象
Scan scan = new Scan();
// 构建两个带时分秒的日期字符串
String startDateStr = date + " 00:00:00";
String endDateStr = date + " 23:59:59";
// 2.构建用于查询时间的范围,例如:2020-10-05 00:00:00 – 2020-10-05 23:59:59
// 3.构建查询日期的两个Filter,大于等于、小于等于,此处过滤单个列使用SingleColumnValueFilter即可。
SingleColumnValueFilter startDateFilter = new SingleColumnValueFilter(Bytes.toBytes("C1")
, Bytes.toBytes("msg_time")
, CompareOperator.GREATER_OR_EQUAL
, new BinaryComparator(Bytes.toBytes(startDateStr)));
SingleColumnValueFilter endDateFilter = new SingleColumnValueFilter(Bytes.toBytes("C1")
, Bytes.toBytes("msg_time")
, CompareOperator.LESS_OR_EQUAL
, new BinaryComparator(Bytes.toBytes(endDateStr)));
// 4.构建发件人Filter
SingleColumnValueFilter senderFilter = new SingleColumnValueFilter(Bytes.toBytes("C1")
, Bytes.toBytes("sender_account")
, CompareOperator.EQUAL
, new BinaryComparator(Bytes.toBytes(sender)));
// 5.构建收件人Filter
SingleColumnValueFilter receiverFilter = new SingleColumnValueFilter(Bytes.toBytes("C1")
, Bytes.toBytes("receiver_account")
, CompareOperator.EQUAL
, new BinaryComparator(Bytes.toBytes(receiver)));
// 6.使用FilterList组合所有Filter
FilterList filterList = new FilterList(FilterList.Operator.MUST_PASS_ALL
, startDateFilter
, endDateFilter
, senderFilter
, receiverFilter);
// 7.设置scan对象filter
scan.setFilter(filterList);
// 8.获取HTable对象,并调用getScanner执行
Table table = connection.getTable(TableName.valueOf("MOMO_CHAT:MSG"));
ResultScanner resultScanner = table.getScanner(scan);
// 9.获取迭代器,迭代每一行,同时迭代每一个单元格
Iterator<Result> iterator = resultScanner.iterator();
// 创建一个列表,用于保存查询出来的消息
ArrayList<Msg> msgList = new ArrayList<>();
while(iterator.hasNext()) {
// 每一行查询出来的数据都是一个Msg对象
Result result = iterator.next();
Msg msg = new Msg();
// 获取rowkey
String rowkey = Bytes.toString(result.getRow());
// 单元格列表
List<Cell> cellList = result.listCells();
for (Cell cell : cellList) {
// 根据当前的cell单元格的列名来判断,设置对应的字段
String columnName = Bytes.toString(cell.getQualifierArray(), cell.getQualifierOffset(), cell.getQualifierLength());
if(columnName.equals("msg_time")) {
msg.setMsg_time(Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength()));
}
if(columnName.equals("sender_nickyname")){
msg.setSender_nickyname(Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength()));
}
if(columnName.equals("sender_account")){
msg.setSender_account(Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength()));
}
if(columnName.equals("sender_sex")){
msg.setSender_sex(Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength()));
}
if(columnName.equals("sender_ip")){
msg.setSender_ip(Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength()));
}
if(columnName.equals("sender_os")){
msg.setSender_os(Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength()));
}
if(columnName.equals("sender_phone_type")){
msg.setSender_phone_type(Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength()));
}
if(columnName.equals("sender_network")){
msg.setSender_network(Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength()));
}
if(columnName.equals("sender_gps")){
msg.setSender_gps(Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength()));
}
if(columnName.equals("receiver_nickyname")){
msg.setReceiver_nickyname(Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength()));
}
if(columnName.equals("receiver_ip")){
msg.setReceiver_ip(Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength()));
}
if(columnName.equals("receiver_account")){
msg.setReceiver_account(Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength()));
}
if(columnName.equals("receiver_os")){
msg.setReceiver_os(Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength()));
}
if(columnName.equals("receiver_phone_type")){
msg.setReceiver_phone_type(Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength()));
}
if(columnName.equals("receiver_network")){
msg.setReceiver_network(Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength()));
}
if(columnName.equals("receiver_gps")){
msg.setReceiver_gps(Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength()));
}
if(columnName.equals("receiver_sex")){
msg.setReceiver_sex(Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength()));
}
if(columnName.equals("msg_type")){
msg.setMsg_type(Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength()));
}
if(columnName.equals("distance")){
msg.setDistance(Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength()));
}
if(columnName.equals("message")){
msg.setMessage(Bytes.toString(cell.getValueArray(), cell.getValueOffset(), cell.getValueLength()));
}
}
msgList.add(msg);
}
// 关闭资源
resultScanner.close();
table.close();
return msgList;
}
Apache Phoenix
简介
- Apache Phoenix基于HBase的一个SQL引擎,我们可以使用Phoenix在HBase之上提供SQL语言的支持。
- Phoenix是可以支持二级索引的,而且Phoenix它自动帮助我们管理二级索引,底层是通过HBase的协处理器来实现的,通过配合二级索引和HBase rowkey,可以提升hbase的查询效率
- Phoenix底层还是将SQL语言解析为HBase的原生查询(put/get/scan),所以它的定位还是在随机实时查询——OLTP领域
- Apache Phoenix不是独立运行的,而是提供一些JAR包,扩展了HBase的功能
Phoenix安装
- Phoenix是基于HBase进行扩展的,核心就是一些phoenix开头的jar包,这些jar包实现了很多的协处理器(当执行put/delete/get这些操作的时候,可以执行一段特殊的代码)
- 安装的时候注意:
- 将phoenix开头的jar包复制到每一个hbase的节点
- hbase-site.xml需要复制到每一个节点
Phoenix的建表语法
在Phoenix中,要执行SQL,必须要建立表的结构,然后才能查询。默认Phoenix不会之前在Hbase使用create创建的表加载进来。
create table if not exists ORDER_DTL(
"id" varchar primary key,
"C1"."status" varchar,
"C1"."money" double,
"C1"."pay_way" integer,
"C1"."user_id" varchar,
"C1"."operation_time" varchar,
"C1"."category" varchar
);
注意事项:
- 每个表必须要有rowkey,通过指定某一个列后面的primary key,就表示该列就是rowkey
- 每个除了rowkey的列必须要带列蔟名,Phoenix会自动帮助我们创建列蔟
- 大小写的问题,在Phoenix如果要使用小写,必须得带双引号。否则会自动转换为大小,如果使用小写将来编写的任何SQL语句都得带双引号
Phoenix数据操作
-
插入/更新都是使用upsert
upsert 表名(列蔟.列1, 列蔟.列2,...) values(...)
-
删除
delete from 表名 where ...
-
查询
select *或列名 from 表名 where
注意大小写问题,如果列名是小写,必须要加上双引号
Phoenix预分区
- 在将来使用Phoenix创建表的时候,也可以指定预分区
- 基于rowkey来进行分区
- 指定分区的数量
-- 1. 使用指定rowkey来进行预分区
drop table if exists ORDER_DTL;
create table if not exists ORDER_DTL(
"id" varchar primary key,
C1."status" varchar,
C1."money" float,
C1."pay_way" integer,
C1."user_id" varchar,
C1."operation_time" varchar,
C1."category" varchar
)
CONPRESSION='GZ'
SPLIT ON ('3','5','7');
-- 2. 直接指定Region的数量来进行预分区
drop table if exists ORDER_DTL;
create table if not exists ORDER_DTL(
"id" varchar primary key,
C1."status" varchar,
C1."money" float,
C1."pay_way" integer,
C1."user_id" varchar,
C1."operation_time" varchar,
C1."category" varchar
)
CONPRESSION='GZ', SALT_BUCKETS=10;
Phoenix创建视图
-
将HBase已经存在的表进行映射
-
名称空间和表名一模一样
-
列蔟名和列名也必须要一一对应
create view "名称空间"."表名"(
rowkey对应列名 varchar primary key,
"列蔟名"."列名" varchar,
);
Phoenix JDBC开发
驱动:PhoenixDriver.class.getName()
JDBC连接URL:jdbc:phoenix:node1.itcast.cn:2181
- 加载JDBC驱动
- 使用DriverManager获取连接
- 准备一个SQL语句
- 准备PrepareStatement
- 设置参数
- 执行语句
- 遍历结果
- 关闭资源
Phoneix索引的分类
- 全局索引
- 针对整个表,在整个HBase集群中,都是有效的,索引数据会分布在全局
- 本地索引
- 索引数据和表数据存储在一起,方便高效查询
- 覆盖索引
- 将数据直接放入在索引中,直接查询索引就可以将数据查询出来,避免再根据rowkey查询数据
- 函数索引
- 基于一个函数表达式来建立索引,例如: where substr(xxx, 0, 10)…,就可以基于substr(xxx, 0, 10)建立索引
全局索引+覆盖索引
全局索引会独立创建一张HBase的表来保存索引数据,一般经常配合覆盖索引使用。将要查询的列、以及索引列全部的数据保存在索引表中,这样,可以有效避免,查索引之后还要去查询数据表。一次查询,全部搞定。
-- 二、在phoenix中创建二级索引
-- 根据用户ID来查询订单的ID以及对应的支付金额
-- 建立一个覆盖索引,加快查询
create index IDX_USER_ID on ORDER_DTL(C1."user_id") include ("id", C1."money");
-- 删除索引
drop index IDX_USER_ID on ORDER_DTL;
-- 强制使用索引查询
explain select /*+ INDEX(ORDER_DTL IDX_USER_ID) */ * from ORDER_DTL where "user_id" = '8237476';
本地索引
- 使用 create local index 索引名称 on 表名(列1, 列2)
- 本地索引对数据是有侵入性的,就是原先的数据会被编码处理,所以只要创建了本地索引,原先的数据就会隐藏起来
- 性能提升几十倍、上百倍
- 当drop掉索引后,数据又可以恢复回来
引列全部的数据保存在索引表中,这样,可以有效避免,查索引之后还要去查询数据表。一次查询,全部搞定。
[外链图片转存中…(img-Jyf24ISq-1713511170849)]
-- 二、在phoenix中创建二级索引
-- 根据用户ID来查询订单的ID以及对应的支付金额
-- 建立一个覆盖索引,加快查询
create index IDX_USER_ID on ORDER_DTL(C1."user_id") include ("id", C1."money");
-- 删除索引
drop index IDX_USER_ID on ORDER_DTL;
-- 强制使用索引查询
explain select /*+ INDEX(ORDER_DTL IDX_USER_ID) */ * from ORDER_DTL where "user_id" = '8237476';
本地索引
- 使用 create local index 索引名称 on 表名(列1, 列2)
- 本地索引对数据是有侵入性的,就是原先的数据会被编码处理,所以只要创建了本地索引,原先的数据就会隐藏起来
- 性能提升几十倍、上百倍
- 当drop掉索引后,数据又可以恢复回来
- 这些都是由Phoenix的协处理器来实现的
原文地址:https://blog.csdn.net/weixin_43977307/article/details/137966413
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!