【深度学习】OCR中的Shrink操作详解
OCR中的Shrink操作详解
在光学字符识别(OCR)中,shrink操作用于对文本框多边形进行缩放,以生成用于训练和检测的特征图。本文将介绍shrink操作的背景、实现方法及其应用。以下是用户提供的代码,详细展示了如何实现这一过程。
背景介绍
在OCR任务中,文本通常以多边形的形式标注于图像中。为了更好地训练检测模型,通常需要将这些多边形进行一定比例的缩放(shrink),以生成不同大小的特征图,从而提高模型的泛化能力和精度。shrink操作的目标是将文本框缩小,以减少噪声对检测结果的影响。
代码实现
以下是实现shrink操作的详细代码:
import numpy as np
import cv2
import pyclipper
from shapely.geometry import Polygon
def shrink_polygon_py(polygon, shrink_ratio):
"""
对框进行缩放,返回去的比例为1/shrink_ratio 即可
"""
cx = polygon[:, 0].mean()
cy = polygon[:, 1].mean()
polygon[:, 0] = cx + (polygon[:, 0] - cx) * shrink_ratio
polygon[:, 1] = cy + (polygon[:, 1] - cy) * shrink_ratio
return polygon
def shrink_polygon_pyclipper(polygon, shrink_ratio):
polygon_shape = Polygon(polygon)
distance = (
polygon_shape.area * (1 - np.power(shrink_ratio, 2)) / polygon_shape.length
)
subject = [tuple(l) for l in polygon]
padding = pyclipper.PyclipperOffset()
padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
shrinked = padding.Execute(-distance)
if shrinked == []:
shrinked = np.array(shrinked)
else:
shrinked = np.array(shrinked[0]).reshape(-1, 2)
return shrinked
class MakeShrinkMap:
def __init__(self, min_text_size=8, shrink_ratio=0.4, shrink_type="pyclipper"):
shrink_func_dict = {
"py": shrink_polygon_py,
"pyclipper": shrink_polygon_pyclipper,
}
self.shrink_func = shrink_func_dict[shrink_type]
self.min_text_size = min_text_size
self.shrink_ratio = shrink_ratio
def __call__(self, data: dict) -> dict:
image = data["img"]
text_polys = data["text_polys"]
ignore_tags = data["ignore_tags"]
h, w = image.shape[:2]
text_polys, ignore_tags = self.validate_polygons(text_polys, ignore_tags, h, w)
gt = np.zeros((h, w), dtype=np.float32)
mask = np.ones((h, w), dtype=np.float32)
shrinked_polygons = []
for i in range(len(text_polys)):
polygon = text_polys[i]
height = max(polygon[:, 1]) - min(polygon[:, 1])
width = max(polygon[:, 0]) - min(polygon[:, 0])
if ignore_tags[i] or min(height, width) < self.min_text_size:
cv2.fillPoly(mask, polygon.astype(np.int32)[np.newaxis, :, :], 0)
ignore_tags[i] = True
else:
shrinked = self.shrink_func(polygon, self.shrink_ratio)
shrinked_polygons.append(shrinked)
if shrinked.size == 0:
cv2.fillPoly(mask, polygon.astype(np.int32)[np.newaxis, :, :], 0)
ignore_tags[i] = True
continue
cv2.fillPoly(gt, [shrinked.astype(np.int32)], 1)
data["shrink_map"] = gt
data["shrink_mask"] = mask
data["shrinked_polygons"] = shrinked_polygons
return data
def validate_polygons(self, polygons, ignore_tags, h, w):
if len(polygons) == 0:
return polygons, ignore_tags
assert len(polygons) == len(ignore_tags)
for polygon in polygons:
polygon[:, 0] = np.clip(polygon[:, 0], 0, w - 1)
polygon[:, 1] = np.clip(polygon[:, 1], 0, h - 1)
for i in range(len(polygons)):
area = self.polygon_area(polygons[i])
if abs(area) < 1:
ignore_tags[i] = True
if area > 0:
polygons[i] = polygons[i][::-1, :]
return polygons, ignore_tags
def polygon_area(self, polygon):
return cv2.contourArea(polygon)
if __name__ == "__main__":
# 示例图像
image = np.ones((200, 200, 3), dtype=np.uint8) * 255
# 示例文本框多边形
text_polys = [
np.array([[50, 50], [150, 50], [150, 100], [50, 100]]),
np.array([[60, 120], [140, 120], [140, 160], [60, 160]])
]
# 示例忽略标志
ignore_tags = [False, False]
# 构建输入数据字典
data = {
"img": image,
"text_polys": text_polys,
"ignore_tags": ignore_tags
}
# 初始化 MakeShrinkMap 类
make_shrink_map = MakeShrinkMap(min_text_size=8, shrink_ratio=0.4, shrink_type="pyclipper")
# 调用类处理数据
result = make_shrink_map(data)
# 获取生成的shrink_map和shrink_mask
shrink_map = result["shrink_map"]
shrink_mask = result["shrink_mask"]
shrinked_polygons = result["shrinked_polygons"]
# 在原图上绘制shrink前的多边形
original_image = image.copy()
for polygon in text_polys:
cv2.polylines(original_image, [polygon.astype(np.int32)], True, (0, 0, 255), 2)
# 在原图上绘制shrink后的多边形
shrinked_image = image.copy()
for polygon in shrinked_polygons:
cv2.polylines(shrinked_image, [polygon.astype(np.int32)], True, (0, 255, 0), 2)
# 保存结果图像
cv2.imwrite("original_image.png", original_image)
cv2.imwrite("shrinked_image.png", shrinked_image)
cv2.imwrite("shrink_map.png", shrink_map * 255) # 将shrink_map转换为图像
cv2.imwrite("shrink_mask.png", shrink_mask * 255) # 将shrink_mask转换为图像
# 显示结果
# cv2.imshow("Original Image", original_image)
# cv2.imshow("Shrinked Image", shrinked_image)
# cv2.imshow("Shrink Map", shrink_map)
# cv2.imshow("Shrink Mask", shrink_mask)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
代码详解
-
Shrink算法实现
代码中实现了两种不同的shrink算法:
shrink_polygon_py
和shrink_polygon_pyclipper
。shrink_polygon_py
:通过计算多边形的中心点,然后将多边形的每个点按照缩放比例向中心点收缩。shrink_polygon_pyclipper
:使用pyclipper
库进行多边形缩放,计算更为精确,适用于复杂多边形。
-
MakeShrinkMap类
MakeShrinkMap
类用于将图像中的文本多边形进行shrink操作。类的构造函数接受最小文本尺寸、缩放比例和缩放类型作为参数。__call__
方法处理输入数据字典,并生成缩放后的特征图和掩码。 -
代码示例
在
__main__
部分,创建了一个示例图像和文本多边形,并使用MakeShrinkMap
类进行shrink操作。结果图像包括原始多边形和缩放后的多边形,并将生成的特征图和掩码保存为图像文件。
应用
Shrink操作在OCR中有广泛的应用,如:
- 文本检测:通过缩放文本框生成特征图,可以提高文本检测模型的准确性和鲁棒性。
- 噪声过滤:缩小多边形可以减少背景噪声对检测结果的干扰。
- 数据增强:生成不同缩放比例的特征图,有助于提升模型的泛化能力。
总结
本文介绍了OCR中shrink操作的实现方法和应用,通过详细的代码示例展示了如何对文本多边形进行缩放。shrink操作在提高OCR模型性能方面具有重要作用,是文本检测和识别过程中不可或缺的一
原文地址:https://blog.csdn.net/x1131230123/article/details/140499781
免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!