自学内容网 自学内容网

YOLO 手动计算anchor的值

 手动计算anchor

创建程序两个程序 kmeans.py 以及 clauculate_anchors.py

不需要运行 kmeans.py,运行 clauculate_anchors.py 即可。

kmeans.py 程序如下:这不需要运行,也不需要更改

如果报错,可以查看第 13 行内容

import numpy as np

def iou(box, clusters):
    """
    Calculates the Intersection over Union (IoU) between a box and k clusters.
    :param box: tuple or array, shifted to the origin (i. e. width and height)
    :param clusters: numpy array of shape (k, 2) where k is the number of clusters
    :return: numpy array of shape (k, 0) where k is the number of clusters
    """
    x = np.minimum(clusters[:, 0], box[0])
    y = np.minimum(clusters[:, 1], box[1])
    if np.count_nonzero(x == 0) > 0 or np.count_nonzero(y == 0) > 0:
        raise ValueError("Box has no area")    # 如果报这个错,可以把这行改成pass即可

    intersection = x * y
    box_area = box[0] * box[1]
    cluster_area = clusters[:, 0] * clusters[:, 1]

    iou_ = intersection / (box_area + cluster_area - intersection)

    return iou_

def avg_iou(boxes, clusters):
    """
    Calculates the average Intersection over Union (IoU) between a numpy array of boxes and k clusters.
    :param boxes: numpy array of shape (r, 2), where r is the number of rows
    :param clusters: numpy array of shape (k, 2) where k is the number of clusters
    :return: average IoU as a single float
    """
    return np.mean([np.max(iou(boxes[i], clusters)) for i in range(boxes.shape[0])])

def translate_boxes(boxes):
    """
    Translates all the boxes to the origin.
    :param boxes: numpy array of shape (r, 4)
    :return: numpy array of shape (r, 2)
    """
    new_boxes = boxes.copy()
    for row in range(new_boxes.shape[0]):
        new_boxes[row][2] = np.abs(new_boxes[row][2] - new_boxes[row][0])
        new_boxes[row][3] = np.abs(new_boxes[row][3] - new_boxes[row][1])
    return np.delete(new_boxes, [0, 1], axis=1)


def kmeans(boxes, k, dist=np.median):
    """
    Calculates k-means clustering with the Intersection over Union (IoU) metric.
    :param boxes: numpy array of shape (r, 2), where r is the number of rows
    :param k: number of clusters
    :param dist: distance function
    :return: numpy array of shape (k, 2)
    """
    rows = boxes.shape[0]

    distances = np.empty((rows, k))
    last_clusters = np.zeros((rows,))

    np.random.seed()

    # the Forgy method will fail if the whole array contains the same rows
    clusters = boxes[np.random.choice(rows, k, replace=False)]

    while True:
        for row in range(rows):
            distances[row] = 1 - iou(boxes[row], clusters)

        nearest_clusters = np.argmin(distances, axis=1)

        if (last_clusters == nearest_clusters).all():
            break

        for cluster in range(k):
            clusters[cluster] = dist(boxes[nearest_clusters == cluster], axis=0)

        last_clusters = nearest_clusters

    return clusters

if __name__ == '__main__':
    a = np.array([[1, 2, 3, 4], [5, 7, 6, 8]])
    print(translate_boxes(a))

运行:clauculate_anchors.py

会调用 kmeans.py 聚类生成新anchors的文件

程序如下:

需要更改第 9 、13行文件绝对路径 以及 第 16 行标注类别名称

# -*- coding: utf-8 -*-
# 根据标签文件求先验框

import os
import numpy as np
import xml.etree.cElementTree as et
from kmeans import kmeans, avg_iou

FILE_ROOT = "/root/"     # 根路径
ANNOTATION_ROOT = "Annotations"   # 数据集标签文件夹路径
ANNOTATION_PATH = FILE_ROOT + ANNOTATION_ROOT

ANCHORS_TXT_PATH = "/root/.txt"   #anchors文件保存位置

CLUSTERS = 9
CLASS_NAMES = ['cls1', 'cls2']   #类别名称

def load_data(anno_dir, class_names):
    xml_names = os.listdir(anno_dir)
    boxes = []
    for xml_name in xml_names:
        xml_pth = os.path.join(anno_dir, xml_name)
        tree = et.parse(xml_pth)

        width = float(tree.findtext("./size/width"))
        height = float(tree.findtext("./size/height"))

        for obj in tree.findall("./object"):
            cls_name = obj.findtext("name")
            if cls_name in class_names:
                xmin = float(obj.findtext("bndbox/xmin")) / width
                ymin = float(obj.findtext("bndbox/ymin")) / height
                xmax = float(obj.findtext("bndbox/xmax")) / width
                ymax = float(obj.findtext("bndbox/ymax")) / height

                box = [xmax - xmin, ymax - ymin]
                boxes.append(box)
            else:
                continue
    return np.array(boxes)

if __name__ == '__main__':

    anchors_txt = open(ANCHORS_TXT_PATH, "w")

    train_boxes = load_data(ANNOTATION_PATH, CLASS_NAMES)
    count = 1
    best_accuracy = 0
    best_anchors = []
    best_ratios = []

    for i in range(10):      ##### 可以修改,建议不要太大,否则时间很长
        anchors_tmp = []
        clusters = kmeans(train_boxes, k=CLUSTERS)
        idx = clusters[:, 0].argsort()
        clusters = clusters[idx]
        # print(clusters)

        for j in range(CLUSTERS):
            anchor = [round(clusters[j][0] * 640, 2), round(clusters[j][1] * 640, 2)]
            anchors_tmp.append(anchor)
            print(f"Anchors:{anchor}")

        temp_accuracy = avg_iou(train_boxes, clusters) * 100
        print("Train_Accuracy:{:.2f}%".format(temp_accuracy))

        ratios = np.around(clusters[:, 0] / clusters[:, 1], decimals=2).tolist()
        ratios.sort()
        print("Ratios:{}".format(ratios))
        print(20 * "*" + " {} ".format(count) + 20 * "*")

        count += 1

        if temp_accuracy > best_accuracy:
            best_accuracy = temp_accuracy
            best_anchors = anchors_tmp
            best_ratios = ratios

    anchors_txt.write("Best Accuracy = " + str(round(best_accuracy, 2)) + '%' + "\r\n")
    anchors_txt.write("Best Anchors = " + str(best_anchors) + "\r\n")
    anchors_txt.write("Best Ratios = " + str(best_ratios))
    anchors_txt.close()

 会生成anchors文件。如果生成文件为空,重新运行即可检查类别是否修改。


原文地址:https://blog.csdn.net/m0_67647321/article/details/136315355

免责声明:本站文章内容转载自网络资源,如本站内容侵犯了原著者的合法权益,可联系本站删除。更多内容请关注自学内容网(zxcms.com)!